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ABSTRACT. LetR be a ring graded by an arbitrary setA. We show thatR decomposes
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1. INTRODUCTION AND PREVIOUS DEFINITIONS

The interest on group-gradings on (associative) rings has been remarkable in the last
years (see for instance [3, 7, 12, 13, 15, 18, 19]). We can alsoconsider the recent mono-
graph [11] and the survey [14]. Also group-gradings on Lie algebras has attracted the
interest of many authors (see [2, 8, 9, 10, 17]). However gradings by means of an arbitrary
set, not necessarily a group, have been barely considered inthe literature. The present
paper is devoted to the study of arbitrary rings graded through arbitrary sets.

Definition 1.1. Let R be an (associative) ring andA 6= ∅ an arbitrary set. It is said thatR
is agraded ring, by means ofA, if

R =
⊕

i∈A

Ri

where anyRi is a subgroup ofR, calledhomogeneous component, satisfying that for any
i, j ∈ A eitherRiRj = {0} or {0} 6= RiRj ⊂ Rk for some (unique)k ∈ A.

Thesupportof the grading is the set

Σ := {i ∈ A : Ri 6= {0}}.

As classical examples of graded rings we have the group-graded rings, (see the hand
book [16]) or the Peirce decomposition of an associative algebra respect to a family of
commuting idempotents. In order to provide some detailed examples we introduce the
next ring:

Let I andJ be two arbitrary nonempty sets andR an arbitrary ring with 1. Consider
the set

S := R(I×J)×(I×J)

of all R-valued mappingsa on (I × J) × (I × J) with just a finite number of non-zero
values and such that

a((i, j), (l,m)) = 0

whenj 6= m.

Supported by the PCI of the UCA ‘Teorı́a de Lie y Teorı́a de Espacios de Banach’, by the PAI with project
numbers FQM298, FQM7156 and by the project of the Spanish Ministerio de Educación y Ciencia MTM2016-
76327C31P.

1

Source file of manuscript



2 F. J. NAVARRO AND A. J. CALDEŔON

The latter, endowed with “point-wise” sum becomes an Abelian group and a ring with
“matrix” multiplication

(ab)((i, j), (l,m)) =
∑

(k,s)∈I×J

a((i, j), (k, s))b((k, s), (l,m)),

for all a, b ∈ R(I×J)×(I×J).

For any((i, j), (k, j)), i, k ∈ I andj ∈ J , we will denote by

E((i,j),(k,j)) : (I × J)× (I × J) → R

the element inS given by

E((i,j),(k,j))((l,m), (n, s)) :=

{

1, if ((l,m), (n, s)) = ((i, j), (k, j));
0, otherwise.

Let us present several gradings onS.

Example 1.1. For any(i, j, k) ∈ I × I × J denote by

S(i,j,k) := RE((i,k),(j,k)),

where for anyr ∈ R the maprE((i,k),(j,k)) denotes

(rE((i,j),(k,j)))((l,m), (n, s)) :=

{

r, if ((l,m), (n, s)) = ((i, j), (k, j));
0, otherwise.

ThenS clearly admits an(I × I × J)-grading given by

S =
⊕

(i,j,k)∈I×I×J

S(i,j,k).

Example 1.2. Let us fix an arbitrary abelian groupG. We have that any function

φ : I × J → G

gives rise to aG-grading onS given by

RE((i,j),(k,j)) ⊂ Sg if and only if g = φ(i, j)−1φ(k, j).

Indeed, taking into accountE((i,j),(k,j))E((m,l),(n,l)) = 0 for (k, j) 6= (m, l), and

φ(i, j)−1φ(k, j)φ(k, j)−1φ(n, j) = φ(i, j)−1φ(n, j),

the above condition clearly defines the grading

S =
⊕

g∈G

Sg

with

(1) Sg =
⊕

RE((i,j),(k,j)),

where the direct sum is taken over alli, k ∈ I; j ∈ J with

φ(i, j)−1φ(k, j) = g.
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A graded subringT of an arbitrarily graded ringR =
⊕

i∈A

Ri is a subgroup ofR

satisfyingTT ⊂ T and such that splits asT =
⊕

i∈A

Ti with anyTi = T ∩ Ri. A graded

subringI of R is agraded idealif RI+ IR ⊂ I. Finally,R is calledgraded simpleif its
product is nonzero and its only graded ideals are{0} andR.

The paper is organized as follows. In Chapter2 we improve the connections techniques
on the support of a grading, developed for group-graded associative algebras in [5], so as
to get our tool for the study of arbitrary gradings on rings. These techniques will allow
us to associate an adequate graded ideal to each equivalenceclass given by the connection
relation on the support of the grading, (it turns out to be an equivalence relation), and show
that any ringR with an arbitrary grading decomposes as the sum of these well-described
graded ideals plus (maybe) a certain subgroup.

In Chapter3, and under mild conditions, the graded simplicity ofR is characterized
and it is shown that the above decomposition is given by the family of the minimal graded
ideals ofR, (each one being a graded simple ring).

2. CONNECTIONS IN THE SUPPORT TECHNIQUES. FIRST RESULTS

We begin this section by developing the main tool in our study.

Let
R =

⊕

i∈A

Ri

be a graded ring by means of the non-empty setA. By renaming if necessary, we will
suppose∅ /∈ A and we will denote byΣ ⊂ A the support of the grading. For eachi ∈ Σ, a
new variablei /∈ Σ is introduced and we denote the set consisting of all these new symbols
by

Σ := {i : i ∈ Σ}.

Given i ∈ Σ we will also denote(i) := i. Now, for any subsetA of Σ ∪̇ Σ we write
A := {i ∈ Σ ∪̇ Σ : i ∈ A} if A 6= ∅ and∅ = ∅.

By denotingP(B) to the power set of a given setB, we introduce the mapping⋆
which recover certain multiplicative relations among the homogeneous components of the
grading.

⋆ : (Σ ∪̇ Σ)× (Σ ∪̇ Σ) → P(Σ),

defined by

• For i, j ∈ Σ,

i ⋆ j =

{

∅, if {0} = RiRj ;
{k}, if {0} 6= RiRj ⊂ Rk.

• For i ∈ Σ andj ∈ Σ,

i ⋆ j = j ⋆ i = {k ∈ Σ : 0 6= RkRj ⊂ Ri} ∪ {l ∈ Σ : 0 6= RjRl ⊂ Ri}.

• For i, j ∈ Σ,
i ⋆ j = ∅.

The proof of the next result is immediate.

Lemma 2.1. Letk ∈ Σ be. Then the following assertions hold.

(i) For anyi, j ∈ Σ, k ∈ i ⋆ j ∪ j ⋆ i if and only ifi ∈ k ⋆ j.
(ii) For anyi ∈ Σ andj ∈ Σ, k ∈ i ⋆ j if and only ifi ∈ j ⋆ k.
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Now we have to note that it is interesting to distinguish one element0 in the support
of the grading. This allows us to cover the cases in which there exists a homogeneous
spaceR0 which has a different behavior to the remaining homogeneousspaces. This is for
instance the case in which the grading setA is an Abelian group, where the homogeneous
spaceR0 associated to the zero element0 in the group enjoys of a distinguished role (see
[5, 16]). From here, we are going to distinguish in our study one element0 in the support
of the grading (satisfying an additional condition). Hence, let us fix an element0 such that
either0 ∈ Σ and satisfies0 ⋆ i 6= {0} andi ⋆ 0 6= {0} for any i ∈ Σ \ {0}, or 0 = ∅.
Denote also

∆ := Σ \ {0} and∆ := Σ \ {0}.

Note that the possibility0 = ∅ holds for the case in which it is not wished to distinguish
any element inΣ.

Example 2.1. In the(I×I×J)-grading given in Example 1.1 we do not wish to distinguish
any element in the support. So0 = ∅ andΣ = ∆. However, in theG-grading given in
Example 1.2 we want to distinguish the homogeneous component associated to the zero
element ofG. Then we will take0 = 0 and∆ = Σ \ {0}.

Finally, we introduce the map

φ : P(∆ ∪̇ ∆)× (Σ ∪̇ Σ) → P(∆ ∪̇ ∆),

as

• φ(∅, a) = ∅ for all a ∈ Σ ∪̇ Σ.
• For any∅ 6= A ∈ P(∆ ∪̇ ∆) anda ∈ Σ ∪̇ Σ,

φ(A, a) =
((

⋃

x∈A

{x ⋆ a, a ⋆ x}
)

\ {0}
)

∪
((

⋃

x∈A

{x ⋆ a, a ⋆ x}
)

\ {0}
)

.

Note that for anyA ∈ P(∆ ∪̇ ∆) anda ∈ Σ ∪̇ Σ we have that

(2) φ(A, a) = φ(A, a)

and

(3) φ(A, a) ∩∆ =
(

⋃

x∈A

{x ⋆ a, a ⋆ x}
)

\ {0}.

Lemma 2.2. For any A ∈ P(∆ ∪̇ ∆) such thatA = A and anya ∈ Σ ∪̇ Σ we
have thati ∈ φ(A, a) ∩ ∆ if and only if i ∈ ∆ and eitherφ({i}, a) ∩ A ∩ ∆ 6= ∅ or
φ({i}, a) ∩A ∩∆ 6= ∅.

Proof. It follows from Equation (3), Lemma 2.1 and the factsj ⋆ k = j ⋆ k, j ⋆ k = ∅ for
anyj, k ∈ Σ. �

Definition 2.1. Let i, j ∈ ∆. We say thati is connectedto j if either i = j or there exists
a subset{a1, a2, ..., an−1, an} ⊂ Σ ∪̇ Σ with n ≥ 2 such that the following conditions
hold:

1. a1 ∈ {i, i}.
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2. φ({a1}, a2) 6= ∅,
φ(φ({a1}, a2), a3) 6= ∅,
φ(φ(φ({a1}, a2), a3), a4) 6= ∅,
...
φ(φ(· · · (φ({a1}, a2), · · · ), an−2), an−1) 6= ∅.

3. j ∈ φ(φ(· · · (φ({a1}, a2), · · · ), an−1), an).

The subset{a1, a2, ..., an−1, an} is called aconnectionfrom i to j.

Lemma 2.3. Let{a1, a2, ..., an−1, an} be,n ≥ 2, a connection fromi to j wherei, j ∈ ∆
with i 6= j. Then there exists a connection{j′, a′n, a

′
n−1, . . . , a

′
3, a

′
2} from j to i in such a

way thatj′ ∈ {j, j} anda′i ∈ {ai, ai} for i ∈ {2, ..., n}.

Proof. Let us argue by induction onn.
If n = 2, thena1 ∈ {i, i} andj ∈ ∆ ∩ φ({a1}, a2). From here

j ∈ (i ⋆ a2) ∪ (a2 ⋆ i) ∪ (i ⋆ a2) ∪ (a2 ⋆ i).

Lemma 2.1 and the factsj ⋆ k = j ⋆ k, j ⋆ k = ∅ for anyj, k ∈ Σ give us now

i ∈ {j ⋆ a2, j ⋆ a2}

and so we can find a set{j′, a′2}, with j′ ∈ {j, j} anda′2 ∈ {a2, a2}, in such a way that it
is a connection fromj to i.

Suppose now the assertion holds for any connection withn, n ≥ 2, elements and let us
show the assertion also holds for any connection

{a1, a2, ..., an, an+1}

with n+ 1 elements. From the facts

j ∈ φ(φ(. . . (φ({a1}, a2), . . . ), an), an+1) ∩∆

and
A := φ(. . . (φ({a1}, a2), . . . ), an) = φ(. . . (φ({a1}, a2), . . . ), an),

(see Equation (2)), Lemma 2.2 gives us either

φ({j}, an+1) ∩ A ∩∆ 6= ∅

or
φ({j}, an+1) ∩ A ∩∆ 6= ∅.

From here we can take some

k ∈ (φ({j}, an+1) ∪ φ({j}, an+1)) ∩ A ∩∆

and so

(4) k ∈ φ({j′}, a′n+1)

for somej′ ∈ {j, j} anda′n+1 ∈ {an+1, an+1}.
On the other hand, the factk ∈ A allows us to assert that

{a1, a2, ..., an}

is a connection fromi to k. By induction hypothesis we can take a connection

{k′, a′n, a
′
n−1, . . . , a

′
3, a

′
2}
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from k to i in such a way thatk′ ∈ {k, k} anda′i ∈ {ai, ai} for i ∈ {2, ..., n}. From here,
Equation (4) allows us to assert that

{j′, a′n+1, a
′
n, a

′
n−1, . . . , a

′
3, a

′
2}

is a connection fromj to i, which completes the proof. �

Proposition 2.1. The relation∼ in ∆, defined byi ∼ j if and only ifi is connected toj, is
an equivalence relation.

Proof. The relation is reflexive by definition and symmetric by Lemma2.3. Hence let us
study the transitivity of∼. Takei, j, k ∈ ∆ such thati ∼ j andj ∼ k. If i = j or j = k it
is trivial, so supposei 6= j andj 6= k and write{i1, ..., in} for a connection fromi to j and
{j1, ..., jm} for a connection fromj to k. Then we clearly have that{i1, ..., in, j2, ..., jm}
is a connection fromj to k. We have shown the connection relation is an equivalence
relation. �

By the above Proposition we can consider the quotient set

∆/ ∼= {[i] : i ∈ ∆},

being[i] = {j ∈ ∆ : i ∼ j} the equivalence class of the elementi ∈ ∆.

Our next goal in this section is to associate a graded idealR[i] of R to any [i]. Fix
i ∈ ∆, we start by defining the subgroupsR0,[i] ⊂ R0 andV[i] as follows

R0,[i] :=
(

∑

j,k∈[i]

RjRk

)

∩R0 andV[i] :=
⊕

j∈[i]

Rj.

Finally, we denote by
R[i] := R0,[i] ⊕V[i].

Also observe that we can writeR = R0 ⊕ (
⊕

[i]∈∆/∼

V[i]).

Lemma 2.4. For anyj ∈ [i] and anyk ∈ Σ we haveRjRk +RkRj ⊂ R[i].

Proof. The situation in whichRjRk +RkRj = {0} is immediate. Hence suppose either
RjRk 6= {0} orRkRj 6= {0}.

In the first case, there exists by the grading a uniquel ∈ Σ such that{0} 6= RjRk ⊂ Rl.
Let us distinguish three possibilities. Ifk 6= 0 andl 6= 0 then the connection{j, k} gives
usj ∼ l and sol ∈ [i]. HenceRjRk ⊂ V[i] ⊂ R[i]. If k 6= 0 andl = 0 then{j, 0} is
a connection fromj to k and thenk ∈ [i]. From hereRjRk ⊂ R0,[i] ⊂ R[i]. Finally, if
k = 0 then necessarilyl 6= 0 and we have that the set{j, 0} showsj ∼ l, thereforel ∈ [i]
and consequentlyRjRk ⊂ Rl ⊂ V[i] ⊂ R[i].

In the second case we can argue in a similar way. �

Proposition 2.2. For anyi ∈ ∆, the subgroupR[i] is a graded ideal ofR.

Proof. We can write

(5) RR[i] ⊂ R0R0,[i] +R0V[i] +
(

⊕

j∈∆

Rj

)

R0,[i] +
(

⊕

j∈∆

Rj

)

V[i]

and

(6) R[i]R ⊂ R0,[i]R0 +V[i]R0 +R0,[i]

(

⊕

j∈∆

Rj

)

+V[i]

(

⊕

j∈∆

Rj

)

.
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Let j, k ∈ [i] be, by Lemma 2.4 and the associativity of the product we haveR0(RkRj) ⊂
R[i] and(RkRj)R0 ⊂ R[i]. From here

(7) R0R0,[i] +R0,[i]R0 ⊂ R[i].

In a similar way, ifj, k ∈ [i] andl ∈ ∆ we getRl(RkRj) + (RkRj)Rl ⊂ R[i] and so

(8)
(

⊕

j∈∆

Rj

)

R0,[i] +R0,[i]

(

⊕

j∈∆

Rj

)

⊂ R[i].

Lemma 2.4 also gives us thatRjR0 +R0Rj ⊂ R[i] for anyj ∈ [i] and so

(9) V[i]R0 +R0V[i] ⊂ R[i].

Finally, we also getRjRk +RkRj ⊂ R[i] for anyj ∈ [i] andk ∈ ∆, being then

(10)
(

⊕

j∈∆

Rj

)

V[i] +V[i]

(

⊕

j∈∆

Rj

)

⊂ R[i].

From Equations (5)-(10) we concludeRR[i] +R[i]R ⊂ R[i]. �

Corollary 2.1. If R is graded simple, then there exists a connection between anycouple
of elements in∆, andR0 =

∑

{i,j∈∆:i⋆j={0}}

RiRj.

Lemma 2.5. For anyi, j ∈ ∆ such that[i] 6= [j] we have thatR[i]R[j] = {0}.

Proof. We can write

(11) R[i]R[j] ⊂ R0,[i]R0,[j] +R0,[i]V[j] +V[i]R0,[j] +V[i]V[j].

By Proposition 2.2

(12) V[i]V[j] ∩ (
⊕

k∈∆

Rk) ⊂ V[i] ∩V[j] = {0}.

Now observe that in case somek ∈ [i] andm ∈ [j] are such that{0} 6= RkRm ⊂ R0

then{m, 0} would be a connection fromm to k being so[i] = [j], a contradiction. From
here

(13) V[i]V[j] ∩R0 = {0}.

From Equations (12) and (13) and the grading of anyV[k] we deduce

V[i]V[j] = {0}.

Hence

R0,[i]V[j] +V[i]R0,[j] ⊂
∑

a,b∈[i]

Ra(RbV[j]) +
∑

c,d∈[j]

(V[i]Rc)Rd

⊂
∑

a∈[i]

Ra(V[i]V[j]) +
∑

d∈[j]

(V[i]V[j])Rd = {0}

and

R0,[i]R0,[j] ⊂
∑

a, b ∈ [i]
c, d ∈ [j]

(RaRb)(RcRd) ⊂
∑

(a,d)∈[i]×[j]

Ra(V[i]V[j])Rd = {0}.

From the above, Equation (11) allows us to assertR[i]R[j] = {0}. �
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Theorem 2.1. LetU be a subgroup ofR0 such thatU+
∑

[i]∈∆/∼

R0,[i] = R0. Then

R = U+
(

∑

[i]∈∆/∼

R[i]

)

where{R[i] : [i] ∈ ∆/ ∼} is a family of graded ideals satisfyingR[i]R[j] = {0} when
[i] 6= [j].

Proof. Since
⊕

i∈∆

Ri =
⊕

[i]∈∆/∼

V[i], we have

R =
(

U+
∑

[i]∈∆/∼

R0,[i]

)

⊕
(

⊕

[i]∈∆/∼

V[i]

)

= U+
∑

[i]∈∆/∼

(R0,[i] ⊕V[i])

= U+
(

∑

[i]∈∆/∼

R[i]

)

.

Proposition 2.2 and Lemma 2.5 complete the proof. �

If any element0 in the support of the grading is not distinguished, that is0 = ∅, we
have the next result as an immediate consequence of Theorem 2.1.

Corollary 2.2. If 0 = ∅ thenR is the direct sum

R =
⊕

[i]∈Σ/∼

R[i]

where{R[i] : [i] ∈ Σ/ ∼} is a family of graded ideals satisfyingR[i]R[j] = {0} when
[i] 6= [j].

We recall that theannihilatorof R is the set

Ann(R) = {v ∈ R : vR+Rv = {0}},

and that, motivated by Corollary 2.1, we say thatR0 is tight whence

R0 =
∑

{i,j∈∆:i⋆j={0}}

RiRj .

Corollary 2.3. SupposeAnn(R) = {0} andR0 is tight, thenR decomposes as the direct
sum

R =
⊕

[i]∈∆/∼

R[i]

where{R[i] : [i] ∈ ∆/ ∼} is a family of graded ideals satisfyingR[i]R[j] = {0} when
[i] 6= [j].

Proof. SinceR0 is tight we can takeU = 0 in Theorem 2.1. From here, we just have to
show the direct character of the sum. Given

x ∈ R[i] ∩
∑

[j] 6=[i]

R[j],
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taking into accountR[i]R[j] = {0} for [i] 6= [j] we getxR[i] +R[i]x = {0} and

x
(

∑

[j] 6=[i]

R[j]

)

+
(

∑

[j] 6=[i]

R[j]

)

x = {0}.

From the abovexR+Rx = {0}, that is,x ∈ Ann(R) = {0}, as desired. �

3. THE GRADED SIMPLE COMPONENTS

In this section we study when the components in the decompositions given in Theorem
2.1, Corollary 2.2 and Corollary 2.3 are graded simple. We begin by introducing the key
notions of maximal length andΣ-multiplicativity in the setup of rings with an arbitrary
grading, in a similar way to that for group-graded associative algebras, group-graded Lie
algebras, group-graded Leibniz algebras and so on. For these notions and examples we
refer to [1, 4, 5, 6].

From now on, for anyi ∈ Σ we will denoteRi := {0}.

Definition 3.1. We say thatR is of maximal lengthif for any i ∈ ∆, the only subgroups
of Ri are{0} and itself.

Observe that anyRi is an Abelian simple group and so isomorphic, as group, toZp with
p prime.

Definition 3.2. We say thatR is Σ-multiplicative if for anyi ∈ Σ andj, k ∈ Σ ∪̇ Σ such
thati ∈ j ⋆ k we have thatRi ⊂ R(Rj +Rj)R ∩R(Rk +Rk)R.

Example 3.1. Consider the(I × I × J)-graded ring

S =
⊕

(i,j,k)∈I×I×J

S(i,j,k)

whereS(i,j,k) := RE((i,k),(j,k)) of Example 1.1 and takeR = Zp with p prime.
Observe thatS is of maximal length. We also have thatS is Σ-multiplicative. Indeed,

if we take(i, j, k), (i1, j1, k1), (i2, j2, k2) ∈ Σ such that

(i, j, k) ∈ (i1, j1, k1) ⋆ (i2, j2, k2)

then necessarilyk = k1 = k2, i = i1, j = j2 andj1 = i2. From here(i, j, k) = (i1, j2, k1)
and since can write

E((i1,k1),(j2,k1)) = E((i1,k1),(i1,k1))E((i1,k1),(j1,k1))E((j1,k1),(j2,k1))

and
E((i1,k1),(j2,k1)) = E((i1,k1),(j1,k1))E((j1,k1),(j2,k1))E((j2,k1),(j2,k1))

we getS(i,j,k) ⊂ SS(i1,j1,k1)S ∩SS(i2,j2,k2)S.

In case we take(i, j, k), (i2, j2, k2) ∈ Σ and (i1, j1, k1) ∈ Σ such that(i, j, k) ∈

(i1, j1, k1) ⋆ (i2, j2, k2), we have thatk = k1 = k2, and eitheri = i2, j = i1, j1 = j2 or
i = j1, j = j2, i1 = i2, being then either(i, j, k) = (i2, i1, k1) or (i, j, k) = (j1, j2, k1).
In the first possibility we can write

E((i2,k1),(i1,k1)) = E((i2,k1),(i1,k1))E((i1,k1),(j1,k1))E((j1,k1),(i1,k1))

and
E((i2,k1),(i1,k1)) = E((i2,k1),(i2,k1))E((i2,k1),(j1,k1))E((j1,k1),(i1,k1))
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while in the second one

E((j1,k1),(j2,k1)) = E((j1,k1),(i1,k1))E((i1,k1),(j1,k1))E((j1,k1),(j2,k1))

and
E((j1,k1),(j2,k1)) = E((j1,k1),(i1,k1))E((i1,k1),(j2,k1))E((j2,k1),(j2,k1)).

From hereS(i,j,k) ⊂ SS(i1,j1,k1)S ∩SS(i2,j2,k2)S in both possibilities.

Finally, if we take(i, j, k), (i1, j1, k1) ∈ Σ and(i2, j2, k2) ∈ Σ such that(i, j, k) ∈

(i1, j1, k1)⋆(i2, j2, k2) we can argue as in the previous case to verify theΣ-multiplicativity
of S.

Example 3.2. TakeI = N, J = {1, 2, ..., r} a finite set,R = Zp and consider the graded
ring S =

⊕

g∈G

Sg of Example 1.2 whereG = Q×, (the multiplicative rational group),

and a family ofr sequences of prime natural numbers{xn,t}n∈N wheret ∈ J , such that
xn,t 6= xm,s when(n, t) 6= (m, s) and define

φ : N× J → Q×

(n, p) 7→ xn,p.

Taking into account Equation (1) it is easy to verify that forany q ∈ Q×, q 6= 1, either
Sq = 0 orSq = ZpE((n,t),(m,t)) for (unique)n,m ∈ N andt ∈ J such thatx−1

n,txm,t = q.

We distinguish the element0 := 1 ∈ Q× being then∆ = Σ \ {1} (see Example 2.1).

Observe that in caseSq = ZpE((n,t),(m,t)) thenSq−1 = ZpE((m,t),(n,t)) and thatS is
of maximal length.

Since
S1 =

⊕

n∈N; t∈J

ZpE((n,t),(n,t)) 6= 0

andE((n,t),(n,t)) = E((n,t),(m,t))E((m,t),(n,t)) for anym ∈ N with m 6= n, we also get
thatS1 =

∑

q∈∆

SqSq−1 and soS1 is tight.

In order to verify thatS is Σ-multiplicative, takei, q, p ∈ Σ such thati ∈ q ⋆ p. By
the above we can writeq = x−1

n,txm,t andp = x−1
r,vxs,v. From heret = v,m = r and so

i = x−1
n,txs,t. Thus

Si = E((n,t),(n,t))(ZpE((n,t),(m,t)))E((m,t),(s,t)) ⊂ SSqS

and
Si = E((n,t),(r,t))(ZpE((r,t),(s,t)))E((s,t),(s,t)) ⊂ SSpS.

If i, p ∈ Σ andq ∈ Σ satisfyi ∈ q ⋆ p and writeq = x−1
n,txm,t andp = x−1

r,vxs,v we have
that necessarily either(m, t) = (s, v) andi = x−1

r,t xn,t or (n, t) = (r, v) andi = x−1
m,txs,t.

From here we can write either

Si = E((r,t),(n,t))(ZpE((n,t),(m,t)))E((m,t),(n,t)) ⊂ SSqS

and
Si = E((r,t),(r,t))(ZpE((r,t),(s,t)))E((s,t),(n,t)) ⊂ SSpS

or
Si = E((m,t),(n,t))(ZpE((n,t),(m,t)))E((m,t),(s,t)) ⊂ SSqS

and
Si = E((m,t),(r,t))(ZpE((r,t),(s,t)))E((s,t),(s,t)) ⊂ SSpS.
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Finally, since the case in whichi, q ∈ Σ, p ∈ Σ andi ∈ q ⋆ p can be studied in a similar
way we conclude thatS isΣ-multiplicative.

Theorem 3.1. LetR be aΣ-multiplicative arbitrarily graded ring of maximal lengthand
withAnn(R) = {0}. ThenR is graded simple if and only if it has all of the elements in∆
connected andR0 is tight.

Proof. The first implication is consequence of Corollary 2.1. To prove the converse, con-
sider a nonzero graded idealI =

⊕

i∈ΣI

Ii of R whereΣI = {i ∈ ∆ : I ∩Ri 6= {0}}∪ {o}

andIj = I ∩Rj for anyj ∈ ΣI .
Denote by∆I = ΣI \{o}. SinceR is of maximal length we have{0} 6= Ii = I∩Ri =

Ri for anyi ∈ ∆I and so

I = I0 ⊕
(

⊕

i∈∆I

Ri

)

.

We assert that∆I 6= ∅. Indeed, in caseI ⊂ R0, sinceAnn(R) = {0} we have that
there exists somek ∈ Σ satisfyingIRk+RkI 6= {0}. From here{0} 6= IRk+RkI ⊂ R0

and so necessarilyk = o. The tight character ofR0 together with the associativity of the
product give us now that there existsi ∈ ∆ such that{0} 6= IRi + RiI ⊂ R0, what
contradicts the election of0. Hence∆I 6= ∅.

From the above we can fix somei0 ∈ ∆I being then

(14) {0} 6= Ri0 ⊂ I.

Let us now show by induction onn that if {a1, . . . , an} is any connection formi0 to
anyj ∈ ∆ then for any

b ∈ φ(((· · · φ({{a1}, a2}) · · · ), an−1), an) ∩∆

we have that
Rb ⊂ I.

In casen = 2, we getb ∈ φ({a1}, a2) with a1 ∈ {i0, i0}. Hence

b ∈ i0 ⋆ a2 ∪ a2 ⋆ i0 ∪ i0 ⋆ a2.

By Σ-multiplicativity and Equation (14) we obtainRb ⊂ I.
Suppose now the assertion holds for any connection{b1, . . . , bn} from i0 to anyk ∈ ∆

and consider some arbitrary connection{a1, . . . , an+1} from i0 to anyj ∈ ∆. We know
that for anyc ∈ A whereA := φ(((· · · φ({{a1}, a2}) · · · ), an−1), an) ∩∆, the subgroup

(15) Rc ⊂ I.

Taking into account that anyb ∈ φ(((· · · φ({{a1}, a2}) · · · ), an), an+1) ∩∆ means

b ∈ φ(A ∪ A, an+1) ∩∆

we haveb ∈ c⋆an+1∪an+1⋆c∪c⋆an+1 for somec ∈ A. From here, theΣ-multiplicativity
of R and Equation (15) allow us to getRb ⊂ I as desire.

Since given anyj ∈ ∆ we know i0 is connected toj, we can assert by the above
observation thatRj ⊂ I. We have shown

⊕

j∈∆

Rj ⊂ I.

From here, the tight character ofRo gives us

R0 ⊂ I
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and soI = R. �

Theorem 3.2. LetR be aΣ-multiplicative arbitrarily graded ring of maximal length, with
Ann(R) = {0} and withR0 tight. ThenR is the direct sum of the family of its minimal
graded ideals, each one being a graded simple graded ring having all of the elements
different to0 in its support connected.

Proof. By Corollary 2.3 we have that

(16) R =
⊕

[i]∈∆/∼

R[i].

We wish to apply Theorem 3.1 to anyR[i] in the above decomposition. Clearly anyR[i]

is Σ-multiplicative and of maximal length as consequence of theΣ-multiplicativity and
maximal length ofR. The0-homogeneous component ofR[i] is equals toR0,[i] and so
tight by construction. Also observe that in casex ∈ R[i] with xR[i] +R[i]x = {0}, then
by Equation (16) and Lemma 2.5 we havex ∈ Ann(R) = {0}. That is,Ann(R[i]) = {0}.
Finally, since the set of element in the support ofR[i] different to0 is [i], and it is easy to

verify that[i] has all of its elements[i]-connected, (connected through elements in[i] ∪̇ [i]),
we can apply Theorem 3.1 to anyR[i] so as to concludeR[i] is graded simple. �

Example 3.3. Let us consider the(I × I × J)-graded ringS of Example 3.1. This is
Σ-multiplicative and of maximal length. Clearly we also haveAnn(S) = 0.

Take now(i, j, k), (n,m, r) ∈ Σ with k = r. Then the set

{(i, j, k), (n, j, k), (i,m, k)}

is a connection from(i, j, k) to (n,m, r).
However, ifk 6= r, as for anyp, q ∈ I we have that(i, j, k) ⋆ (p, q, s) = (i, j, k) ⋆

(p, q, s) = ∅ whenk 6= s, and that(i, j, k) ⋆ (p, q, k) = (i, j, k) ⋆ (p, q, k) ∈ I × I × {k},
we get that there is not any connection from(i, j, k) to (n,m, r). We have shown that the
equivalence classes inΣ/ ∼ are[(i, j, k)] = I × I × {k} and by applying the results in
this section we can assert thatS decomposes as the direct sum

S =
⊕

k∈J

Sk

where anySk =
⊕

(i,j)∈I×I

ZpE((i,k),(j,k)) is a graded simple (minimal) graded ideal ofS

having all of the elements of its support connected.

Example 3.4. Let us consider the graded ringS of Example 3.2. This isΣ-multiplicative
of maximal length and withS0 tight. Also, it is easy to check thatAnn(S) = 0.

Take nowq, p ∈ ∆ with p 6= q and recall that we can writeq = x−1
n,txm,t with n 6= m

andp = x−1
r,vxs,v with r 6= s. Supposev = t. By fixing someu, v ∈ N such that

u /∈ {n,m, r} andv /∈ {m, r, s, u} we get that the set

{q, x−1
u,txn,t, x

−1
m,txv,t, x

−1
r,t xu,t, x

−1
v,txs,t}

is a connection fromq to p.
However, ifv 6= t, and since∆ = {x−1

n,txm,t : n,m ∈ N with n 6= m andt ∈ J}, there
is not any connection fromq to p. We have shown that the equivalence classes in∆/ ∼ are
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[x−1
n,txm,t] = {x−1

r,t xs,t : r, s ∈ N with r 6= s} and by applying the results in this section
we can assert that, under the notation

St = (
∑

n∈N

ZpE((n,t),(n,t)))⊕ (
⊕

n,m∈N;n6=m

ZpE((n,t),(m,t)))

for anyt ∈ J , anySt is a graded simple, graded ring having all of the elements distinct to
0 = 1 of its support connected. Moreover,S decomposes as the direct sum of these family
of minimal graded ideals, namely:

S =
r

⊕

t=1

St.
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