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ON ARBITRARILY GRADED RINGS

FRANCISCO J. NAVARRO IZQUIERDO AND ANTONIO J. CALDERN MARTIN

ABSTRACT. LetfR be aring graded by an arbitrary sét We show thatR decomposes
as the sum of well-described graded ideals plus (maybe) taicesubgroup. We also
provide a context where the graded simplicity9®fis characterized and where a second
Wedderburn-type theorem in the category of arbitrarilydghrings is stated.
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1. INTRODUCTION AND PREVIOUS DEFINITIONS

The interest on group-gradings on (associative) rings leas bemarkable in the last
years (see for instance [3, 7, 12, 13, 15, 18, 19]). We canassider the recent mono-
graph [11] and the survey [14]. Also group-gradings on Ligeakas has attracted the
interest of many authors (see [2, 8, 9, 10, 17]). Howeveriggecby means of an arbitrary
set, not necessarily a group, have been barely consideré iliterature. The present
paper is devoted to the study of arbitrary rings graded thin@rbitrary sets.

Definition 1.1. Let R be an (associative) ring antl £ () an arbitrary set. It is said th&t
is agraded ring by means of4, if
n=EFPx

icA

where anyR; is a subgroup ofk, calledhomogeneous componesatisfying that for any

i,j € AeitherR;R|,; = {0} or {0} # R, |, C Ry, for some (unique} € A.
Thesupportof the grading is the set

Si={ic A% £ {0}}.

As classical examples of graded rings we have the groupedradgs, (see the hand
book [16]) or the Peirce decomposition of an associativelaig respect to a family of
commuting idempotents. In order to provide some detaileth®tes we introduce the
next ring:

Let 7 andJ be two arbitrary nonempty sets afan arbitrary ring with 1. Consider
the set
S = R(IXJ)X(IXJ)
of all R-valued mappings on (I x J) x (I x J) with just a finite number of non-zero
values and such that
a((é, ), (I m)) =0
whenj # m.
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The latter, endowed with “point-wise” sum becomes an Aletjpoup and a ring with
“matrix” multiplication

(ab)((@,5), (tm) = > al(i,g), (k, s)b((k,5), (I m)),

(k,s)elxJ
forall a,b € RUXT)*x(IxJ),
For any((i,7), (k, 7)), 4,k € I andj € J, we will denote by
E((i,j),(k,j)) : (I X J) X (I X J) —R
the element ir& given by
_ L if(dm), (n,s)) = ((,5), (k. 7));
(it (L) (n, 8)) = { 0, otherwise.

Let us present several gradings®n

Example 1.1. For any(i, j, k) € I x I x J denote by
S i) = RE((G0),G,k))
where for any- € R the maprE(; i), (j,x)) denotes

Bt o) = { § L 0 = 36

Then& clearly admits arf/ x I x J)-grading given by

(i,5,k)EIXIXJ

Example 1.2. Let us fix an arbitrary abelian group. We have that any function
¢o:IxJ—G
gives rise to a3-grading onS given by
RE((i,j). (k) C G ifandonlyifg = ¢(i, )~ (k. j).
Indeed, taking into accouttt(; ;) (x.;)) E((m.1),(n,1)) = 0 for (k,j) # (m,1), and

¢(i, )" ¢k, )bk, 5) " (n, j) = ¢(i, ) o(n, ),
the above condition clearly defines the grading
c=Pe,
geG
with
(1) &y = D RE(1.5),0n5):
where the direct sum is taken overalk € I;j € J with

(b(l,])_l(b(k,j) =g
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A graded subring® of an arbitrarily graded ringk = & R, is a subgroup ofk
icA
satisfyingT¥ C ¥ and such that splits &8 = @ T; with anyT; = T N R;. A graded
i€ A
subringJ of PR is agraded ideaif RT + IR C J. Finally, R is calledgraded simplef its
product is nonzero and its only graded idealsfdrpand?R.

The paper is organized as follows. In Chageve improve the connections techniques
on the support of a grading, developed for group-gradeccésee algebras in [5], so as
to get our tool for the study of arbitrary gradings on ring$e$e techniques will allow
us to associate an adequate graded ideal to each equivalassgiven by the connection
relation on the support of the grading, (it turns out to begunalence relation), and show
that any ringR with an arbitrary grading decomposes as the sum of thesedestiribed
graded ideals plus (maybe) a certain subgroup.

In Chapter3, and under mild conditions, the graded simplicity9fis characterized
and it is shown that the above decomposition is given by thélyeof the minimal graded
ideals offR, (each one being a graded simple ring).

2. CONNECTIONS IN THE SUPPORT TECHNIQUESFIRST RESULTS

We begin this section by developing the main tool in our study

Let
n=EFPx
icA
be a graded ring by means of the non-empty 4etBy renaming if necessary, we will
supposé ¢ A and we will denote by C A the support of the grading. For each X, a
new variable ¢ ¥ is introduced and we denote the set consisting of all thesesgmbols
by
Y:={i:ie X}

Giveni € T we will also denotd) = 4. Now, for any subsell of ¥ U ¥ we write
A:={ieSUX:iecA}ifA#£0Dandd = (.

By denotingP(B) to the power set of a given sé, we introduce the mapping
which recover certain multiplicative relations among tloentogeneous components of the
grading. _ _

*: (ZUD)x (BUX) = PR,
defined by
e Fori,j e X,
i — @, if {O} = E)‘iii)%j;
PEIT (k) it {0} £ RR; C Ry

e Foric Y andj € %,
ixj=jxi={keL:0#RR; CR}IU{l€X:0+#RR CR}
e Fori,j €%, o
ixj=0.
The proof of the next result is immediate.
Lemma 2.1. Letk € ¥ be. Then the following assertions hold.

(i) Foranyi,je X, keixjUjxiifandonlyifi € k«j.
(i) Foranyi e X andj € X,k € i jifandonlyifi € j x k.
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Now we have to note that it is interesting to distinguish oleenento in the support
of the grading. This allows us to cover the cases in whichetleists a homogeneous
spaceR, which has a different behavior to the remaining homogenspases. This is for
instance the case in which the grading d4es an Abelian group, where the homogeneous
spaceRR, associated to the zero elem@rin the group enjoys of a distinguished role (see
[5, 16]). From here, we are going to distinguish in our studg element in the support
of the grading (satisfying an additional condition). Hereeus fix an elemend such that
eithero € X and satisfies x i # {o} andi x o # {o} foranyi € ¥ \ {o}, oro = 0.
Denote also

A=Y\ {o}andA =%\ {o}.

Note that the possibility = () holds for the case in which it is not wished to distinguish

any element irt.

Example 2.1.Inthe(I x I x J)-grading given in Example 1.1 we do not wish to distinguish
any element in the support. $o= () and> = A. However, in theG-grading given in
Example 1.2 we want to distinguish the homogeneous compassociated to the zero
element ofG. Then we will takeo = 0 andA = X\ {0}.

Finally, we introduce the map
¢:PAUA)x (ZUX) = PAUA),
as

e $(0,a)=0foralla e TUX.
e Forany) #A € P(AUA)anda € YUY,

$(2A, a) = ((U{x*a,a*x}) \{o}) U ((U{x*a,a*x}) \{o}).
zeA zeA

Note that for any2l € P(A U A) anda € X U X we have that

(2) ¢(Q[7 a) = ¢(Q{a a)
and
3) ¢(Ql,a)ﬂA:(U{gc*a,a*gc})\{o}.
zeA

Lemma 2.2. For any A € P(A U A) such that?2l = 20 and anya € ¥ U X we
have thati € ¢(2,a) N A if and only ifi € A and eitherg({i},a) N AN A # @ or
o({i},a) NANA #£ (.

Proof. It follows from Equation (3), Lemma 2.1 and the fagts k = j x k, j x k = () for
anyj, k € 3. O

Definition 2.1. Let4,j € A. We say that is connectedo j if eitheri = j or there exists
asubsetay,az,...,an_1,a,} C X U X with n > 2 such that the following conditions
hold:

1l a € {Z,E}
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2. p({a1}, az) # 0,
o(p({a1},az2),a3) # 0,
p(d(¢({ar}, a2), as), as) # 0,

(S~ (b({ar}, az), - )y an_2), an1) # 0.
3. j€d(o(---(o({ar},a2),- -+ ), an-1),an).

The subsefaq, as, ..., an—1, a, } is called aconnectiorfrom to ;.

Lemma 2.3. Let{a, as, ...,an—1, a, } be,n > 2, a connection fromi to j wherei, j € A
with ¢ # j. Then there exists a connecti¢yl, al,,a),_,,...,a5, a5} fromjtoiin such a
way thatj’ € {j,j} anda’ € {a;,a;} fori € {2,...,n}.

Proof. Let us argue by induction on.

If n =2,thena; € {i,i} andj € AN ¢({a1},az2). From here

j S (i*ag) U (ag*i) U (E*G/Q) U (CLQ *;)
Lemma 2.1 and the facisx k = j « k, j x k = () for anyj, k € ¥ give us now
i€ {j*az,j*az}

and so we can find a s€§’, ab}, with 5’ € {4, 7} anda}, € {a2, @z}, in such a way that it
is a connection from to 4.

Suppose now the assertion holds for any connectionwith > 2, elements and let us
show the assertion also holds for any connection

{ala A2,y ...y p, an-l—l}

with n 4+ 1 elements. From the facts

JE (b(d)( o ((b({al}an)a s )van)vanJrl) nA

and

A:=d(... (6({ar},a2),... ) an) = &(. .. (6({a1},a2),...), an),

(see Equation (2)), Lemma 2.2 gives us either

o({j} @) NANA #D
or

P({7}, ans1) NANA £ 0.
From here we can take some

ke (o({j} @) Uo({7}, ans1)) NANA

and so
(4) keo({j'},an )

for somej’ € {j,j} andal,,, € {ant1,ant1}-
On the other hand, the fakte 2 allows us to assert that

{a1,a9,...,a,}
is a connection froni to k. By induction hypothesis we can take a connection

/ ! ! I I
{k y Qs Q15 - - ,,CL3,CL2}
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from k to 7 in such a way that’ € {k, k} anda’ € {a;,a;} fori € {2,...,n}. From here,
Equation (4) allows us to assert that

A I I 1o
{-7 van+lvanvan—17"'va3va2}

is a connection from to 4, which completes the proof. O

Proposition 2.1. The relation~ in A, defined by ~ j if and only if: is connected tg, is
an equivalence relation.

Proof. The relation is reflexive by definition and symmetric by Lem23. Hence let us
study the transitivity ofv. Takei, j, k € Asuchthat ~ jandj ~ k. If i=jorj =kit

is trivial, so supposé# j andj # k and write{i, ..., i, } for a connection fronito j and

{41, -, jm } for a connection fronj to k. Then we clearly have thdt, ..., i, j2, ..., jm }

is a connection frony to k. We have shown the connection relation is an equivalence
relation. O

By the above Proposition we can consider the quotient set
A) ~={[i] i € A},
being[i] = {j € A : i ~ j} the equivalence class of the elemért A.

Our next goal in this section is to associate a graded idgalof % to any[i]. Fix
i € A, we start by defining the subgroups ;) C R, and¥y; as follows

9%07[1*] = ( Z mji)%k) NR, and%m = @fﬁj.
Jkeld] jeli]
Finally, we denote by
fﬁ[i] = 9%07[1‘] S ‘B[i].

Also observe that we can writd = R, @ ( @ D))
lilea/~

Lemma 2.4. For anyj € [i] and anyk € ¥ we haveR; i, + RR; C Ry

Proof. The situation in which’ ;% + 3,0, = {0} is immediate. Hence suppose either
i)%ji)%k #+ {0} or D%ki)‘{j #* {0}

Inthe first case, there exists by the grading a unigaé such thaf0} # R;9%R, C R;.
Let us distinguish three possibilities. #f£ o0 andl # o then the connectiofyj, k} gives
usj ~ landsol € [i]. HenceR; R, C Vp;) C Ry If k # o andl = o then{j, 0} is
a connection frony to k and therk € [i]. From hereR; %, C R, ;) C Ry;). Finally, if
k = o then necessarily# o and we have that the s¢j, o} shows;j ~ [, thereford € [i]
and consequent®i; R, C R; C Y C Ry

In the second case we can argue in a similar way. O

Proposition 2.2. For anyi € A, the subgroupiy; is a graded ideal ofA.

Proof. We can write

(5) RR;) C RoRo [ + RV + (@ 9%,-)9%0_,[1-] + (@ D%j)%[i]
JjEA JEA

and

(6) fﬁ[i]fﬁ C mo,[i]fﬁo + mm R, + 2)%0,[1-] (@ mj) + ‘B[i] (@ fﬁj).

JEA JEA



ON ARBITRARILY GRADED RINGS 7

Letj, k € [i] be, by Lemma 2.4 and the associativity of the product we Blav&i,R,) C
Ry and(ReNR))NR, C Ry From here
(7) RoNRo, i) + Ro,qRo C Ry
In a similar way, ifj, k € [i] andl € A we getR;(RNR;) + (ReNR;)R C Ry and so

(8) (@ mj)mo,[i] + R0, (@ i)%j) C R
JEA JEA

Lemma 2.4 also gives us thait; R, + RN, C Ry, for anyj € [i] and so
9 mm Ro + E)%QTM C fﬁ[i].
Finally, we also gefi; R, + RN, C Ry, for any;j € [i] andk € A, being then

(10) (B ) + 0 (D)) < 7y
JjEA JEA
From Equations (5)-(10) we conclu@R; + RN C Ry O

Corollary 2.1. If R is graded simple, then there exists a connection betweer@ungle
of elements in\, andR, = > RiR;.
{i,jeAixj={o}}

Lemma 2.5. For anyi, j € A such thati] # [j] we have thafi;9i}; = {0}.

Proof. We can write

(11) R Ry € Ro,[iRo, ) + Ro,[1DB1y) + D Ro, ) + Vi V-
By Proposition 2.2
(12) m[i]%m N (@ S)‘{k) C %[i] n m[j] = {0}
keA

Now observe that in case sorhes [i] andm € [j] are such thaf0} # RxR,, C R,
then{m, o} would be a connection fromn to k being so[i] = [;], a contradiction. From
here

(13) BV N Re = {0}
From Equations (12) and (13) and the grading of @ipy we deduce
p By = {0}
Hence
Ro Vi) + VnPoy C D RaOTy) + D (TgRe)Ra
a,bei] c,d€e[j]
C Y RV Dy) + Y (Ve V) Ra = {0}
a€li] de(s]
and
mo,[i]mo,m C Z (maiﬁb)(i)%ciﬁd) C Z fﬁa(%m‘ﬂm)md = {O}
a,b € [i] (a,d) €[] x[4]
c,d € [j]

From the above, Equation (11) allows us to as3gfi(;) = {0}. d



8 F. J. NAVARRO AND A. J. CALDEFON

Theorem 2.1. Letl be a subgroup diR, such that + Z Ro (] = Ro- Then
[[eA/~

R=U+ ( Z fﬁ[i])
[ileA/~
where{R; : [i] € A/ ~} is a family of graded ideals satisfyirg;9i;; = {0} when
[i] # [4]-

Proof. Since@ R, = @ T;), we have
i€EA [ileA/~

R = (ﬂ-i— Z 9%07[1-])@( @ m[i])
lijeA/~ lijlea/~

s+ Z (Eﬁo,[i]@%[i])
lleA/~

= w3 %),

lileA/~

Proposition 2.2 and Lemma 2.5 complete the proof. O

If any elemenb in the support of the grading is not distinguished, that is 0, we
have the next result as an immediate consequence of Theotem 2

Corollary 2.2. If o = () thenfA is the direct sum
R P Ny
[{]es/~
where{9Ry; : [i] € ¥/ ~} is a family of graded ideals satisfyirlg;;9%;; = {0} when
(1] # [j].
We recall that theannihilator of R is the set
Ann(R) = {v e R: vR + Rv = {0}},
and that, motivated by Corollary 2.1, we say thatis tight whence
R, = > RN, .
{i,jeAsixj={0}}
Corollary 2.3. Supposéinn(R) = {0} andfR, is tight, thenk decomposes as the direct
sum
R D %
lilen/~
where{Ry; : [i] € A/ ~} is a family of graded ideals satisfyifg;;?};; = {0} when
[i] # [4]-

Proof. SincefR, is tight we can takeél = 0 in Theorem 2.1. From here, we just have to
show the direct character of the sum. Given

xr € ERM N Z D%[j],
[71#[4]
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taking into accountiy;R; = {0} for [i] # [j] we getzR; + Rz = {0} and

x([;]Rm) + ( > Rm)ﬂ? = {0}.
i1l

[1#1]
From the aboveR + Rz = {0}, thatis,z € Ann(R) = {0}, as desired. O

3. THE GRADED SIMPLE COMPONENTS

In this section we study when the components in the decoripasigiven in Theorem
2.1, Corollary 2.2 and Corollary 2.3 are graded simple. Wgrbby introducing the key
notions of maximal length an&-multiplicativity in the setup of rings with an arbitrary
grading, in a similar way to that for group-graded assogadilgebras, group-graded Lie
algebras, group-graded Leibniz algebras and so on. Foe thattons and examples we
referto [1, 4, 5, 6].

From now on, for any € X we will denotefi; := {0}.

Definition 3.1. We say thatr is of maximal lengthf for any i € A, the only subgroups
of R, are{0} and itself.

Observe that anf; is an Abelian simple group and so isomorphic, as groufi,taith
p prime.

Definition 3.2. We say thafi is ¥-multiplicative if for anyi € ¥ andj, k € ¥ U X such
thati € j x k we have thatt; C R(R; + RH)R N R(Ry, + Ry)R.

Example 3.1. Consider thé x I x J)-graded ring
&= @ Sun
(i,4,k)eIXIxJ
where&; ; 1) := RE((,r),;,k) Of Example 1.1 and tak& = Z, with p prime.
Observe tha& is of maximal length We also have tha® is X-multiplicative Indeed,
if we take(i, 7, k), (i1, j1, k1), (i, j2, k2) € 3 such that
(4,4, k) € (i1, g1, k1) = (i2, jo, k2)

then necessarily = k1 = ko,i = i1, j = ja andji = ia. Fromherdi, j, k) = (i1, ja, k1)
and since can write

B iy k1), G2 k) = B k), k) B k1), G k) B k). G2 k1)
and

E(ir k1), G2 k1) = B(Gn,k0),Gr k) B k), Gz k) B (G2 k) G K1)
we getS; jx) C 66(;, k)6 NES i, js ks S

In case we tain,j, k)7 (i21j21k2) € ¥ and (ilajlakl) € ¥ such that(l,], k) €

(il,jl, kl) * (ig,jg,kz), we have that = ]{1 = kz, and either = ig,j = il, jl = jg or
i = j1, j = j2, 11 = iz, being then eithe(i, j, k) = (iz, i1, k1) or (i, 4, k) = (j1, jo, k1)-
In the first possibility we can write

E(ig k1), (i1,01)) = E(iz,k0), G k1) B 00, G k) B G k) G k)
and

B (i k1), i1, k1)) = E((i2,k1), 2, k0) B2, G k1) B k)G )
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while in the second one

B k), G k1)) = EGr k)G k) B (G k), k) B Gk ) (o))
and
Bk, o k)) = B k)i k) B (G k)G k) B (G k) (2 K1) -
From hereS; j ) C 66, j,.£,)6 NG, 4, k) © in both possibilities.
Finally, if we take(i, j, k), (i1, 71, k1) € ¥ and(ia, jo, ko) € X such that(i, j, k) €
(i1, J1, k1)*(i2, j2, ko) we can argue as in the previous case to verifjiihaultiplicativity
of &.

Example 3.2. TakeI =N, J = {1, 2, ...,r} afinite set;R = Z, and consider the graded

rng & = @ &, of Example 1.2 wheré& = Q*, (the multiplicative rational group),
geG
and a family ofr sequences of prime natural numbéss, ;},,eny Wheret € J, such that

Tnt # Tm,s When(n,t) # (m,s) and define
¢:Nx.J—Q*

(1,p) = Tnp.
Taking into account Equation (1) it is easy to verify thatémyq € Q*, ¢ # 1, either
S, =00r&, = ZpE((n1),(m,p) for (uniquey, m € Nandt € J such thatr;jxmt =q.
We distinguish the element:= 1 € Q* being thenA = X\ {1} (see Example 2.1).

Observe thatin cas®, = Z, E((n,1),(m,1)) thenS -1 = Zy,E((1n 1), (n,1)) and thatS is
of maximal length
Since

61 = EB ZpE((n,t),(n,t)) 7 0
neN; teJ

andE((n7t))(n7t)) = E((n,t),(m,t))E((m,t),(n,t)) for anym € N with m # n, we also get
that&, = ) 6,6,-: and soS; is tight.
€A

In orde? to verify thatS is 3-multiplicative, takei, g, p € ¥ such that € ¢ x p. By
the above we can writg = :v;_i:vm,t andp = x;i:vs,v. From here = v, m = r and so
= x;}xsyt. Thus

Si = E((n),(nt) (ZpE((n.t).(m)) E((m.t).(s.1) C 6646
and

Si = E((nt).(rit) (ZpE((r).(5.)) E((s,0).(s,)) C G6p6.
If i,p € ¥ andq € X satisfyi € ¢« p and writeg = x%ixmi andp = x;ﬂl)xs_,v we have
that necessarily eithérn, t) = (s,v) andi = x; zy; Of (n,t) = (r,v) andi = z;,"a, ;.
From here we can write either

Gi = E((r0),(n) (Lo Ei(n,0),(m,)) E((m.t) (n.0)) © 6676

and
Si = E((r,t),(r,6)) LpE((r,2),(5,6)) E((5,0),(n,t)) C 6E,6
or
Si = E((m,t),(n,0) (LpE((n,t),(m,))) E((m,),(5,t)) C G676
and

Si = B(m.t),r:0) Lo B(r),(5,)) E((5,0),(5.) © EE56-
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Finally, since the case in whichq € ¥, p € ¥ andi € ¢ x p can be studied in a similar
way we conclude tha® is X-multiplicative

Theorem 3.1. LetR be aX-multiplicative arbitrarily graded ring of maximal lengtnd
with Ann(R) = {0}. ThenR is graded simple if and only if it has all of the elementain
connected an€R, is tight.

Proof. The first implication is consequence of Corollary 2.1. Tovyerthe converse, con-
sider a nonzero graded ideak= @ I, of RwhereX; = {i € A: INR; # {0}}U{o}
1EXT
andl; = INR; foranyj € X;.
Denote byA; = X7\ {o}. SinceR is of maximal length we havfd} # I = INK; =

R, foranyi € Ay and so
11,0 (€D %).
IEAT

We assert that\; # ). Indeed, in casé C fR,, sinceAnn(R) = {0} we have that
there exists some € X satisfyingI/ R, + R I # {0}. From herg0} # IR, +R,I C R,
and so necessarily = o. The tight character di, together with the associativity of the
product give us now that there existse A such that{0} # IR; + R, I C R,, what
contradicts the election @f HenceA; # ().

From the above we can fix somge A being then

(14) {0} # %y, C 1.

Let us now show by induction on that if {a1, ..., a,} is any connection forni, to
anyj € A then for any

beo(((---¢({{ar}, a2}) - +),an-1),an) N A
we have that
Ry C 1.
In casen = 2, we geth € ¢({a1}, az) with a; € {io,i0}. Hence
b € ig*asUas*igUig*as.

By X-multiplicativity and Equation (14) we obtaiR, C 1.
Suppose now the assertion holds for any connedthen . ., b, } fromiy to anyk € A

and consider some arbitrary connectien, ..., a,1} fromig to anyj € A. We know
that for anyc € 20 where2l := ¢(((- - - #({{a1},az2}) - --),an—1),a,) N A, the subgroup
(15) R. C 1.

Taking into account that artye ¢(((- - - ¢({{a1},a2}) -+ ), an), ant1) N A means
be p(AUA an1)NA

we haveb € cxay,1Uay, 1 *cUcxa, 41 for somee € 2. From here, th&-multiplicativity
of ;R and Equation (15) allow us to g8, C I as desire.

Since given anyj € A we knowig is connected tg, we can assert by the above
observation thali; C I. We have shown

PR cr
JjEA
From here, the tight character %, gives us
Ro C 1



12 F. J. NAVARRO AND A. J. CALDEFON
and sol = fR. O

Theorem 3.2. LetfR be aX-multiplicative arbitrarily graded ring of maximal lengtiith
Ann(R) = {0} and withfR, tight. Then is the direct sum of the family of its minimal
graded ideals, each one being a graded simple graded ringnhaall of the elements
different too in its support connected.

Proof. By Corollary 2.3 we have that
(16) n= P Ry

[ileA/~

We wish to apply Theorem 3.1 to affy; in the above decomposition. Clearly &fy;)
is X-multiplicative and of maximal length as consequence ofXheultiplicativity and
maximal length ofR. Theo-homogeneous component #f; is equals td?, ; and so
tight by construction. Also observe that in case QR with 20y, + R,z = {0}, then
by Equation (16) and Lemma 2.5 we have Ann(R) = {0}. Thatis,Ann(%Ry;) = {0}.
Finally, since the set of element in the supporpyf; different too is [i], and it is easy to

verify that[i] has all of its elements]-connected, (connected through elementgity [:]),
we can apply Theorem 3.1 to afif; so as to conclud®; is graded simple. O

Example 3.3. Let us consider thél x I x J)-graded ringS of Example 3.1. This is
Y-multiplicative and of maximal length. Clearly we also haven(&) = 0.
Take now(i, j, k), (n, m,r) € ¥ with kK = r. Then the set

{(i, 4, k), (n, 4, k), (i,m, k) }

is a connection fronti, j, k) to (n, m, ).

However, ifk # r, as for anyp,q € I we have tha(s, j, k) x (p,q,s) = (¢,4, k) %
(p,q,s) = 0 whenk # s, and that(i, 5, k) x (p, ¢, k) = (4,4, k) * (p,q, k) € [ x I x {k},
we get that there is not any connection fr¢iny, k) to (n, m,r). We have shown that the
equivalence classes B/ ~ are[(i,j,k)] = I x I x {k} and by applying the results in

this section we can assert ti&atdecomposes as the direct sum

& =Ppe:

keJ
where anysy, = @ Z,Eqi ),k is @ graded simple (minimal) graded ideal@f

(i,§)€IxI
having all of the elements of its support connected.

Example 3.4. Let us consider the graded ri@) of Example 3.2. This i&-multiplicative
of maximal length and witl®,, tight. Also, it is easy to check th&tnn (&) = 0.

Take nowg, p € A with p # ¢ and recall that we can writg = x;j:vm,t withn £ m
andp = x;ﬂl)xs_,v with » # s. Supposev = t. By fixing someu,v € N such that
u ¢ {n,m,r} andv ¢ {m,r, s,u} we get that the set

—1 —1 —1 —1
{Q? Iu,txn-,t’ Im,txv-,t’ Ir,t Lty xv,t IS-,t}

is a connection frong to p.
However, ifv # ¢, and since\ = {x;, (& ¢ : n,m € Nwith n % m andt € J}, there
is not any connection fromto p. We have shown that the equivalence classes/in- are
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[, @m.t] = {2, 250 1 s € Nwith r # s} and by applying the results in this section

we can assert that, under the notation
S =D ZEmpymn) ®( D ZoE(nn.(ma)

neN n,meN;n#m

foranyt € J, any&, is a graded simple, graded ring having all of the elementmdiso
o = 1 of its support connected. Moreové¥,decomposes as the direct sum of these family
of minimal graded ideals, namely:

6 = é Gt.
t=1
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