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Functional data analysis

Q. What is functional data analysis (fda)?

Broadly speaking, statistical analysis of data which can be looked
upon as “curves”, “surfaces” etc. is called functional data analysis.
These are the atoms of FDA.

Examples:

Growth curves of boys and girls
Temperature curves over a year for various weather stations
Hip and knee angles in the sagittal plane over time through a gait cycle
Trace of the tip of the pen while writing a letter/word, e.g., “fda”
... (the list goes on and on)

One could also have more complex data, e.g., functional time series
(where the value at each time point is itself a function), spatially and
temporally varying curves, images of the brain obtained from an MRI
etc.
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Functional data analysis (contd.)

Anirvan Chakraborty (IISER Kolkata) 3 / 19



Functional data analysis (contd.)

Although each curve/surface/image can only be recorded at finitely
many points on the domain, still, these atoms of FDA are intrinsically
infinite dimensional.

Need to consider such data as elements of appropriate infinite
dimensional spaces - involves new challenges.

Indeed, many well-known statistical notions and techniques may break
down completely! Need to develop a new branch of mathematical
statistics.

Aspects that play crucial roles are broadly:

Geometry: The atoms are nice geometrical objects with an inherent
ordering.

Randomness: Being objects in an infinite dimensional space, there is a
need to understand notions of probability distributions and statistical
models in those spaces.

Complexity: Often, there is a natural structure that expresses the
features of interest, which may be low dimensional.
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The L2 setup of Functional Data Analysis

� Aim: Probe the law of the random function �X�t� : t � �a, b��.

� Data: n i.i.d. realizations �Xi�t� : t � �a, b��ni�1

� Setup: Assume Xi � L2�a, b� almost surely for all i 	 1, 2, . . . , n.

Mean function

Assume E�

X

� � �. Define m�t� 	 E�X�t��. Then, m � L2�a, b�.

�� Characterizes “location”of the random function.

Covariance kernel

Assume E���X��2� � �. Define k�t, s� � Cov�X�t�, X�s��. Then,
k � L2�	a, b
 � 	a, b
�.

�� Characterizes the fluctuations of the random function around its mean
�� Still uncountably infinite! Reduce to countable variation?
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Karhunen-Loéve Expansion

Assume that E���X��2� � �. Then,

X�t� �m�t� �
��

n�1

ξnφn�t�

where ξn � �X �m,φn	, called the principal component scores, are zero
mean uncorrelated rvs with variance λn.

Captures complete curve dynamics - canonical FDA framework:

Separation of variables (stochastic versus functional)

Quantification of smoothness
�
 φn contributes as λn�

�
j λj

�
 rate of decay of λn

Variance components / functional fluctuations around mean

Optimal finite dimensional representation
(modelling/methodology + inference/regularization)
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Karhunen-Loéve Expansion of Brownian motion

X�t� �
��

n�1

ξn
�
2 sin

��
k � 1

2

�
πt

�
���������������������������������

Zk�t�
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�
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Karhunen-Loéve representation in Statistics

1947/49 Independent introduction by Karhunen & Loéve
�� Linear filtering of stochastic process and series representation
1950 Ulf Grenander shows importance in statistics (birth of FDA?)
�� Uses as coordinate representation for likelihood ratios
1958 C. R. Rao hints potential usefulness for growth curves
�� Components of variance interpretation
...
1973 Kleffe considers empirical version (n�1

�n
i�1�Xi �X� � �Xi �X�)

�� Large sample convergence
1982 Dauxois, Pousse & Romain develop asymptotics of empirical version
1986 Besse & Ramsay (psychometrics) use as PCA
1991 Rice & Silverman: “Estimating Mean and Covariance when data are
curves”
Subject then takes off...
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Functional Linear Models

Let y be a random variable and X be a random element in a
separable Hilbert space H.

Given observations ��yi, Xi� : 1 � i � n�, we intend to fit the
functional linear model (with a scaler response and a functional
covariate)

y � α� �X, β	 � ε

to the data, where β 
 H is the slope function, α 
 R is the intercept,
and ε is a random error term independent of X and is assumed to be
zero mean.

Typically, β is the main parameter of interest. Once we estimate β by
�β, then once can estimate α by �α :� y � �X, �β	.
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Functional Linear Models (contd.)

Method of Least Squares leads to the linear system

�Kβ � �C,

where �C � n�1
�n

i�1�yi � y��Xi �X�, and
�K � n�1

�n
i�1�Xi �X� � �Xi �X�.

The infinite dimensional nature of the problem implies that the linear
systems are ill-posed, and thus the estimation of β is an ill-posed
inverse problem.

Specifically, solving �Kβ � �C is equivalent to setting

�β �
n�1�
j�1

�λ�1j � �C, �φj��φj .
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Functional Linear Models (contd.)

Roughly, can only include those j’s such that the growth of λ�1j can

be “controlled” by n�1

�� delicate balance between sample size n and the rate of decay of
eigenvalues.

However, cannot take only finitely many terms since this would induce
asymptotically non-negligible bias.

Bias-variance trade-off crucially depends on rate of decay of
eigenvalues as well as the number of terms contributing to the
expression of �β above
�� need appropriate regularization

Broadly, regularization in functional linear models can be categorized
into

(a) Sieve methods �� Spectral tuncation
(b) Penalization methods �� Tikhonov regularization
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Functional Classification

Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be two samples from
probability measures P1 and P2 (equivalently, two populations Π1 and
Π2) on a Hilbert space H.

Problem: Given a new observation Z, how do we determine whether
Z belongs to Π1 or Π2?

In the multivariate setting, the “optimal” classifier is called the Bayes
classifier, and is given by

Classify Z to Π1 if fP �Z��fQ�Z� � c for a suitable c

However, for functional data, fP and fQ are not obtainable in most
cases.

Q. What are the ways around this problem?
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Functional Classification (contd.)

Suppose that the two functional populations differ only in their
means.

A simple classifier would be to the “centroid classifier” constructed by
projecting the data onto a single pre-chosen direction.

Assuming μ1 � μ and denoting μ2 � 0, we

Classify Z to Π1 if ��Z � μ, ψ��2 � ��Z,ψ��2 � 0,

where ψ is the pre-chosen projection direction.

So, the minimum value (over choices of ψ) of the total
misclassification error is

1� Φ

�
1

2

��
j�1

λ�1j m2
j

�
.
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Functional classification (contd.)

If
�
�

j�1 λ
�2
j m2

j � �, the minimum is achieved with

ψ �
��

j�1

λ�1j mjφj � K�1μ.

If
�
�

j�1 λ
�2
j m2

j � �, then the minimum cannot be attained since
there is no valid ψ � H satisfying the above condition. If, further,�
�

j�1 λ
�1
j m2

j � �, then the minimum misclassification error is strictly
positive.

The minimum error is zero if
�
�

j�1 λ
�1
j m2

j � �

�� perfect classification is achieved!

Classifier based on the likelihood ratio test is equivalent to applying
the centroid based classifier.

The perfect classification also holds under non-Gaussianity.
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Discretely observed functional data

In theory: one observed complete curves X1, X2, . . . , Xn

In practice: one observed each curve discretely with potential
measurement error

Wij � Xi�Tij� � εij , , j � 1, 2, . . . , Ni, i � 1, 2, . . . , n,

where

�Tij : j � 1, 2, . . . , Ni� can be a deterministic or random grid over
�a, b� for each i.
�	 each set of grid points may be completely different from the other
sets of grid points

εij ’s are measurement errors and are assumed to be independent of
the Xi’s. They are themselves i.i.d. with zero mean and variance σ2.
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Discretely observed functional data (contd.)

Generally, if min1�i�nNi grows to infinity with n, then the data is
called “densely observed”.

On the other hand, if max1�i�nNi stays bounded as n� �, the
data is called “sparsely observed”.

Issues:

(a) We do not observe the true functional data, and the observations are
contaminated with error. So, it may not possible to directly estimate
population parameters.

(b) Since the grid may differ across observations, even simple estimators like
taking the mean of the observations may not be useful and appropriate (may
get only one observation per time point!).

(c) Estimation procedure and their performance will heavily depend on the
behaviour of the grid – different performance for dense and sparse sampling.

Anirvan Chakraborty (IISER Kolkata) 16 / 19



Discretely observed functional data (contd.)

Two major approaches:

(1) First find smooth estimates of each curve Xi from the discrete set of
observations �Wij : j � 1, 2, . . . , Ni�, using some smoothing
technique.
Then, use the smoothed estimates (functions) to carry out other
analyses – leads to independent estimates of curves

and the converse approach,

(2) Using the pooled data, first find an estimate of the covariance kernel.
Then use the estimated covariance kernel to provide estimates of the
true curves – leads to dependent estimates of curves
�� PACE approach
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Discretely observed functional data (contd.)

Dense sampling: min1�i�nNi � n1�4 as n��

Under appropriate smoothing and other conditions, the estimators of μ, K,
λj ’s and φj ’s obtained under approaches (1) and (2) are

�
n-consistent –

parametric rate of convergence.

�� as good as observing the fully functional data.

Sparse sampling: max1�i�nNi � C � � as n��

(a) Approach (1) will be inconsistent since there will be non-negligible bias
in the estimates of the individual curves.

(b) Approach (2) will be consistent under certain assumptions provided that
the sampling points are randomly distributed over the entire of �0, 1�, or
else, it will also be inconsistent like approach (1).

(c) Estimators of μ, K and φj ’s have slower (non-parametric) rates of

convergence. However, the estimators of the λj ’s continue to be�
n-consistent.
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Thank you!
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