Visible Light Communication: An Emerging Area in Wireless

A. Chockalingam

Department of ECE
Indian Institute of Science, Bangalore

Indian Academy of Sciences, Bengaluru
81st Annual Meeting
IISER, Pune
7 November 2015
1. Introduction
2. VLC characteristics
3. MIMO and OFDM in VLC
4. QCM for VLC
5. Concluding remarks
Introduction
VLC characteristics
MIMO and OFDM in VLC
QCM for VLC
Concluding remarks

Source: Internet
Optical wireless

- Optical wireless communication (OWC)
 - promising complementary technology for RF communication (RFC) technology
 - information conveyed via optical radiation in free space
 - wavelengths of interest
 - infrared to ultraviolet
 - includes **visible light** wavelengths (380 to 780 nm)

- Visible light communication (VLC)
 - communications using visible light spectrum
 - abundant VLC spectrum (~ 300 THz bandwidth)
 - multi-gigabit rates over short distances

Source: www.ieee802.org/15
RF communication

- Transmitter
 - Tx RF chain (up converter, power amplifier), Tx antenna

- Receiver
 - Rx antenna, Rx RF chain (low noise amplifier, down converter)

VLC

- Transmitter
 - Light emitting diode (LED)
 - Tx data by intensity modulating (IM) the LED
 - LEDs with fast switching times

- Receiver
 - Photo detector (PD)
 - Direct detection (DD)
VLC is not that new!

- 1879: ‘photophone’ by Alexander G. Bell
 - Analog voice transceiver
 - Transmitter: a mirror controls the amount of light reflected from a source
 - Receiver: a photocell connected to a speaker

OWC and VLC in recent days

- 1980
 - infrared remote controls (analog)

- 1993
 - infrared data transfer in mobiles, laptops, etc.
 - standards body: IrDA (9.6-128 kbps).

- IEEE 802.15c
 - low power, high data rate systems in satellites, portable devices, etc.

- VLCC: Visible Light Communication Consortium

- VLC for home networks
 - hOME Gigabit Access (OMEGA) project

- IEEE 802.15.7
 - VLC PHY, up to 96 Mbps
VLC implementations/applications

VLC implementations/applications

Introduction

VLC characteristics

MIMO and OFDM in VLC

QCM for VLC

Concluding remarks

VLC characteristics

- Baseband communication (no passband involved)
- Signaling: positive, real-valued tx. signals
- Advantages
 - low power, low cost devices (LEDs, PDs)
 - no spectrum cost
 - no RF radiation issues
 - inherent security in closed-room applications
 - simultaneous data transmission and lighting
 - MIMO and OFDM techniques
 - improve spectral efficiency and performance
- Issues
 - channel itself!
 - ambient light noise/interference
 - alignment between Tx and Rx (but diffused light helps)
 - scattering and multipath dispersion (ISI)
The MIMO connection
A typical indoor VLC configuration

(c) Typical indoor VLC configuration

(d) SNR as a function of receiver position

• CIR between source S and receiver R at time t is given by

$$h(t;S,R) = \sum_{k=0}^{\infty} h^{(k)}(t;S,R)$$

$h^{(k)}(t)$: response of light undergoing exactly k reflections

• N_t LEDs (transmitter)
• N_r photo detectors (receiver)
• \mathbf{H} denotes the $N_r \times N_t$ VLC MIMO channel matrix

$$
\mathbf{H} =
\begin{bmatrix}
 h_{11} & h_{12} & h_{13} & \cdots & h_{1N_t} \\
 h_{21} & h_{22} & h_{23} & \cdots & h_{2N_t} \\
 \vdots & \vdots & \ddots & \cdots & \vdots \\
 h_{N_r1} & h_{N_r2} & h_{N_r3} & \cdots & h_{N_rN_t}
\end{bmatrix}
$$

MIMO channel between LEDs and PDs
- h_{ij}: LOS channel gain between jth LED and ith PD is

$$h_{ij} = \frac{n+1}{2\pi} \cos^n \phi \cos \theta \frac{A}{R^2} \text{rect} \left(\frac{\theta}{\text{FOV}} \right)$$

Geometry of LED source and photo detector
$R(\phi) = \frac{n+1}{2\pi} P_S \cos^n(\phi)$ for $\phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Generalized Lambertian radiation pattern of LED

- n is the mode number of the radiating lobe given by
 $$n = \frac{-\ln(2)}{\ln \cos \Phi_{\frac{1}{2}}}, \quad \Phi_{\frac{1}{2}} \text{ is half-power semiangle}$$

- Mode number specifies the directionality of the source
 - larger the mode number, higher is the directionality
 - $n = 1$ corresponds to a traditional Lambertian source
Example VLC channel matrices

- **4 × 4 VLC MIMO channel matrix**

- Channel matrix for \(d_{tx} = 1 \text{m} \) (\(d_{tx} \): separation between LEDs)
 - Channel gain: High
 - Channel correlation: High

\[
H_{d_{tx}=1\text{m}} = \begin{bmatrix}
0.5600 & 0.5393 & 0.5196 & 0.5393 \\
0.5393 & 0.5600 & 0.5393 & 0.5196 \\
0.5196 & 0.5393 & 0.5600 & 0.5393 \\
0.5393 & 0.5196 & 0.5393 & 0.5600 \\
\end{bmatrix} \times 10^{-5}
\]

- Channel matrix for \(d_{tx} = 4 \text{m} \)
 - Channel gain: Low
 - Channel correlation: Low

\[
H_{d_{tx}=4\text{m}} = \begin{bmatrix}
0.9947 & 0.9337 & 0.8782 & 0.9337 \\
0.9337 & 0.9947 & 0.9337 & 0.8782 \\
0.8782 & 0.9337 & 0.9947 & 0.9337 \\
0.9337 & 0.8782 & 0.9337 & 0.9947 \\
\end{bmatrix} \times 10^{-6}
\]
Modulation schemes for VLC

- Transmit signals in VLC must be
 - positive real-valued for intensity modulation of LEDs
- Approaches
 - OOK
 - M-PAM with positive signal points
 - M-QAM/M-PSK with Hermitian symmetry
 - SSK and spatial modulation using multiple LEDs
 - QCM (recently proposed by us)

Quad-LED Complex Modulation (QCM)

- A complex modulation scheme for VLC
- Uses 4 LEDs (hence the name ‘quad’)
- Does not need Hermitian symmetry
- QCM signaling
 - LEDs are simultaneously intensity modulated by the magnitudes of the real and imaginary parts of a complex symbol
 - Sign information is conveyed through spatial indexing of additional LEDs
- QCM module can serve as a basic building block to bring in the benefits of complex modulation to VLC

Mapping of complex symbol $s = s_I + js_Q$ to LEDs activity in QCM

<table>
<thead>
<tr>
<th>Real part s_I</th>
<th>Status of LEDs</th>
<th>Imag. part s_Q</th>
<th>Status of LEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 0</td>
<td>LED1 emits $</td>
<td>s_I</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>LED2 is OFF</td>
<td></td>
<td>LED4 is OFF</td>
</tr>
<tr>
<td>< 0</td>
<td>LED1 is OFF</td>
<td>< 0</td>
<td>LED3 is OFF</td>
</tr>
<tr>
<td></td>
<td>LED2 emits $</td>
<td>s_I</td>
<td>$</td>
</tr>
</tbody>
</table>

Example:

- If $s = -3 + j1$, then
 - LED1: OFF
 - LED2: emits 3
 - LED3: emits 1
 - LED4: OFF

Corresponding QCM tx. vector is $x = [0 3 1 0]^T$

Note:

- Two LEDs (one among LED1 and LED2, and another one among LED3 and LED4) will be ON simultaneously.
 Other two LEDs will be OFF.
- **QCM transmitter**

Data in \(\log_2 |A| \) bits is mapped to QAM/PSK. The signal is given by \(s = s_I + js_Q \). The real part is \(|s_I| \) and the imaginary part is \(|s_Q| \). Based on these, the DAC sends the signal to the LED.

- **QCM receiver**

The PDs (PD 1 to PD 4) convert the optical signal into an electrical signal, which is then amplified by ADCs (ADC 1 to ADC 4). The QCM detector and demapper processes the signals to recover the data bits.
QCM performance

- QCM, BPSK
- QCM, 4-QAM
- QCM, 16-QAM
- QCM, 64-QAM

Eb/No in dB

Bit error rate

$N_r = N_t = 4$
• **Effect of varying LED spacing** \((d_{tx})\)

- **optimum LED spacing**
 - due to opposing effects of weak channel gain and weak channel correlation for increasing \(d_{tx}\)
• Visible light wireless communication
 • an emerging and promising complementary technology to RF communication technology

• Several hard-to-resist advantages
 • with matching challenges

• A fast growing area with great potential
• MIMO and OFDM techniques for VLC are promising
• QCM for VLC - our recent contribution (promising)
• Bright future for VLC
Thank you