Planetary Sciences

Stardust in Laboratory & Evolution of Early Solar System

Kuljeet K. Marhas

13th September 2008
Physical Research Laboratory
Elements Surrounding Us!

Solar Abundances
Cosmic Abundances = Mix from many Stellar Sources

The interstellar medium is 'ecologically' a disaster area where a large number of stellar sources pollute their environment with their garbage.

Kuljeet K. Marhas

Physical Research Laboratory

13th September 2008
Arrival of the Solar System!

We are quite literally stardust!

Presolar Grains & Evolution of Early Solar System

Kuljeet K. Marhas

Physical Research Laboratory

13th September 2008
Picture book of presolar grains!

Silicon carbide

Graphite grains

Corundum

Silicon Nitride

Silicate grain

Spinel grains

Presolar Grains &
Evolution of Early Solar System

Kuljeet K. Marhas

13th September 2008
Physical Research Laboratory
Work Horse for micron sized particle!

SIMS: Secondary Ion Mass Spectrometer
Big Brother!!

NanoSIMS: Nano Secondary Ion Mass Spectrometer
Grains are identified as presolar from their completely anomalous isotopic compositions.

The carbon and nitrogen isotopic ratios of presolar silicon carbide grains span a huge range.

Star and Starbits!

Presolar Grains & Evolution of Early Solar System

Kuljeet K. Marhas
13th September 2008
Physical Research Laboratory
Stellar Identity!!

SiC Grain

Red Giant

Frequency

$^{12}\text{C}/^{13}\text{C}$

Presolar SiC
(Hoppe et al. 1994)

Carbon (AGB) Stars
(Lambert et al. 1986)
No Pain… No Gain…..

Probe wide range of astrophysical processes:

- Stellar Evolution
- Nucleosynthesis
- Galactic Chemical Evolution
- Stellar dust formation
Arrival of the Solar System!
FAQs!

- Is it possible to identify the stellar sources contributing to the initial mix?
- Was it a triggered the collapse?
- What was the time scale of collapse?
- What processes and time scales are involved in formation of grains and formation & differentiation of planetesimals and planets?
White Amoeba!

Allende

Calcium Aluminum Inclusion

As seen under a stereo-microscope

Presolar Grains & Evolution of Early Solar System

Kuljeet K. Marhas

13th September 2008
Physical Research Laboratory
Now-extinct short-lived nuclides in the Early Solar System serve as cosmic CLOCKS.

Solar System \sim 4.5 billion years

so any short-lived nuclides with half life $<$100Ma present in early solar system have become extinct.

If a now-extinct nuclide was incorporated “live” into the first forming solids, its fossil records can be used to record the time of formation.
Short-lived Now-extinct Nuclides Present in the Early Solar System

<table>
<thead>
<tr>
<th>Radio-Nuclide</th>
<th>Half-life (Ma)</th>
<th>Daughter Nuclide</th>
<th>Reference Nuclide</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{41}Ca</td>
<td>0.10</td>
<td>^{41}K</td>
<td>^{40}Ca</td>
</tr>
<tr>
<td>^{26}Al</td>
<td>0.74</td>
<td>^{26}Mg</td>
<td>^{27}Al</td>
</tr>
<tr>
<td>^{10}Be</td>
<td>1.5</td>
<td>^{10}B</td>
<td>^{9}Be</td>
</tr>
<tr>
<td>^{60}Fe</td>
<td>1.5</td>
<td>^{60}Ni</td>
<td>^{56}Fe</td>
</tr>
<tr>
<td>^{53}Mn</td>
<td>3.7</td>
<td>^{53}Cr</td>
<td>^{55}Mn</td>
</tr>
<tr>
<td>^{107}Pd</td>
<td>6.5</td>
<td>^{107}Ag</td>
<td>^{108}Pd</td>
</tr>
<tr>
<td>^{182}Hf</td>
<td>9</td>
<td>^{182}W</td>
<td>^{180}Hf</td>
</tr>
<tr>
<td>^{129}I</td>
<td>16</td>
<td>^{129}Xe</td>
<td>^{127}I</td>
</tr>
<tr>
<td>^{244}Pu</td>
<td>81</td>
<td>Fission Xe</td>
<td>^{238}U</td>
</tr>
<tr>
<td>^{146}Sm</td>
<td>103</td>
<td>^{142}Nd</td>
<td>^{144}Sm</td>
</tr>
</tbody>
</table>
No Pain… No Gain…

Probe wide range of early solar system processes:

• Time scale of formation of first solids, formation time of different planetary objects
• Stellar sources
• Activity of early Sun
NASA’s **Stardust mission** launched in 1999 to collect dust from comet Wild 2 and return the samples to Earth.

The first ever comet sample return mission.

Science objective: to understand the materials and conditions that went into the formation of the Solar System.
Travel, travail of descent, cross examination!

230 km from nucleus
$\Delta V = 6.1 \text{ km/s}$

January 2, 2004
Caught and the catcher: Dust in the Aerogel!

Interstellar dust impacted the aerogel collector grid with a relative speed of about 20 km/s (45,000 mph).

With masses in the picogram regime, the particles should only penetrate about 100 microns into the surface of the 3 cm thick aerogel tiles, leaving behind tracks in the aerogel.

The particles are sub-micron in size and are few in number, approximately 45 in the entire collector.

The collector itself is about 1,000 cm² in area.
Creeks and cracks!

Presolar Grains & Evolution of Early Solar System

Kuljeet K. Marhas

13th September 2008
Physical Research Laboratory
Standing alone: presolar grain!
Unexpected truth: CAI-like particle!

- Spinel, Al-diopside, anorthite, melilite
- Fe-sulfides in glass
- Perovskite
- Compressed aerogel “cap”
- Void
Match - Mismatch!

- are comets mechanical agglomerations of unprocessed presolar (interstellar) materials?
- what are the relationships to isotope reservoirs in asteroidal samples? to IDPs?
- do comets provide an enhanced reservoir of circumstellar grains with distinct nucleosynthetic histories? (i.e., are grains really “stardust”?)

Greenberg model
aggregate of submicron amorphous interstellar grains with core-mantle structure

IDP model
aggregate of submicron grains with few large xtals.
chondritic w/ high C, high D/H
there is stardust in STARDUST

- but not primarily isotopically distinctive presolar grains

limited O isotope analyses of refractory minerals (fo, CAI-minerals) consistent with other similar primitive solar system materials (CC, IDPs)

- Inti isotopically like other CAIs; derives from inner solar system reservoir
- implies large scale radial transport in nebula

Wild-2 not enhanced reservoir of presolar matter

- capture effects severe but not prohibitive
"Sure it's beautiful, but I can't help thinking about the interstellar dust out there."

M. W. FISHER