Title: A Novel Contiguous Deletion involving NDP, MAOB, and EFHC2 in a Patient with Familial Norrie Disease: Bilateral Blindness and Leucocoria without Other Deficits

Authors: Bei Jia¹#, Liping Huang¹#, Yaoyu Chen², Siping Liu¹, Cuihua Chen¹, Ke Xiong³, Lanlin Song¹, Yulai Zhou², Xinpeng Yang⁴,⁵*, and Mei Zhong¹*

Affiliations:

1 The Center for Prenatal and Hereditary Disease Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China;

2 Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun 130021, China;

3 Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China

4 Center for Genetic and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China;

5 Laboratory of Systems Neuroscience, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China;

#These two authors contributed equally to this work.

*Corresponding authors: Mei Zhong or Xinpeng Yang, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern...
Avenue, Guangzhou, 510515, P. R. China. Emails to: zhongmei@smu.edu.cn or yangxinp@smu.edu.cn

Running Title: Contiguous deletion involving NDP, MAOB and EFHC2

Key words: Norrie disease; NDP gene; MAOB gene; EFHC2 gene; genomic microarray; contiguous deletion syndrome
ABSTRACT

Contiguous microdeletions of the Norrie disease pseudoglioma (NDP) region on chromosome Xp11.3 have been widely confirmed as contributing to the typical clinical features of Norrie disease (ND). However, the precise relation between genotype and phenotype could vary. The contiguous deletion of NDP and its neighboring genes, MAOA/B and EFHC2, reportedly leads to syndromic clinical features such as microcephaly, intellectual disability, and epilepsy. Here we report a novel contiguous microdeletion of the NDP region containing the MAOB and EFHC2 genes, which causes eye defects but no cognitive disability. We detected a deletion of 494.6kb at Xp11.3 in both the proband and carrier mother. This deletion was then used as the molecular marker in prenatal diagnosis for 2 subsequent pregnancies. The deletion was absent in 1 of the fetuses, who remains without any abnormalities at 2 years of age. The proband shows the typical ocular clinical features of ND including bilateral retinal detachment, microphthalmia, atrophic irides, corneal opacification, and cataracts, but no symptoms of microcephaly, intellectual disability, and epilepsy. This familial study demonstrates that a deficiency in 1 of 2 MAO genes may not lead to psychomotor delay, and deletion of EFHC2 may not cause epilepsy. Our observations provide new information on the genotype-phenotype relations of MAOA/B and EFHC2 genes involved in the contiguous deletions of ND.
1. Introduction

Norrie disease (ND) is a rare, X-linked, recessive genetic disease (online Mendelian inheritance in man [OMIM] # 310600). It is a neurodevelopmental disorder mainly characterized by congenital blindness due to early proliferative deficiency and subsequent bilateral degenerative changes in neuroretina. The clinical ocular features of ND include retinal detachment, accumulation of immature retinal cells, corneal opacities, cataracts, and atrophic irides. About half of ND patients with ocular signs have intellectual disability, and 75-90% of patients show progressive sensorineural hearing loss (Aponte et al. 2009; Nikopoulos et al. 2010; Pelcastre et al. 2010; Smith et al. 2012). These typical ND phenotypes are caused by mutations in Norrie disease pseudoglioma (NDP) gene (Chen et al. 1993). It encodes for the secreted cysteine-rich protein norrin, which in turn functions as a growth factor regulating retinal vascular development (Deng et al. 2013; Wang et al. 2012; Zuercher et al. 2012). Norrin has a length of 133 residues, with a cysteine-knot domain spanning residue 32 to residue 133. The mutations that disrupt the cysteine-knot motif correspond to severe retinal dysgenesis, and noncysteine mutations can cause other NDP-related retinopathies (Wu et al. 2007). It was reported that the ND related mutations include point mutation in the coding region, intragenic deletion or inset, mutation of splicing site, deletion or insertion of CT repeat sequence in the 5' terminal non-coding region, and large fragment deletion of NDP gene (Smith et al. 2012). A previous report identified the phenotypes associated with a point mutation (L13R) in 46 affected members of a ND family: all had the ocular abnormalities of typical ND, 45% showed moderate or severe intellectual disability, and 78% had hearing loss occurring at different ages (Fuchs et al. 1994). Different contiguous deletions of the NDP gene and its neighboring genes give rise to “Norrie-plus syndromes,” which show the typical clinical features of ND and various additional
features. For example, patients harboring deletions affecting \textit{MAOA}, \textit{MAOB}, and \textit{NDP} genes display more severe neurological phenotypes, with profound psychomotor and verbal deficits (Berger et al. 1992; Chen et al. 1995; Collins et al. 1992; Donnai et al. 1988; Gal et al. 1986; Schuback et al. 1995; Staropoli et al. 2010; Suarez-Merino et al. 2001; Zhu et al. 1989). If contiguous deletions span genomic regions containing \textit{MAOA}, \textit{MAOB}, \textit{NDP}, and \textit{EFHC2} genes, the clinical features reportedly include bilateral retinal detachment, severe psychomotor disability, and myoclonic epilepsy (Rodriguez-Revenga et al. 2007). Deletion of both \textit{MAOA} and \textit{MAOB} leads to severe psychomotor disabilities in patients (Rodriguez-Revenga et al. 2007; Saito et al. 2014; Sims et al. 1989; Whibley et al. 2010). Although patients with contiguous deletions spanning \textit{EFHC2} and other genes show epilepsy (Gu et al. 2005; Rodriguez-Revenga et al. 2007; Staropoli et al. 2010; Suarez-Merino et al. 2001), there is no direct evidence to prove that deletion of \textit{EFHC2} gene could lead to epilepsy. In addition, neurologic symptoms including intellectual disabilities, seizures, behavior disturbances, were not only displayed in patients with these contiguous gene deletions as described above, but also in patients and families with point mutations in \textit{NDP} gene (Smith et al. 2012). Thus, the genotype-phenotype relation clearly varies in patients with Norrie-plus syndromes. In this report, we present a novel contiguous deletion of \textit{MAOA}, \textit{MAOB}, and \textit{NDP}, with affected family members displaying only ocular findings: bilateral blindness with leucocoria.

2. Methods and material

\textbf{Family status and clinical phenotype manifestations}
The proband (Fig. 1, subject III-1) was the first child born to healthy parents at full term (Fig. 1, subject II-2 and subject II-3). And the delivery was without incident. At birth, both the eyes of the proband obviously display exceedingly abnormity (Fig. 2A). At 5 months of age, ophthalmological evaluation revealed bilateral retinal detachment, microphthalmia, corneal opacification, disappearance of the anterior chamber, atrophic irides, and cataracts. At the age of 8 years, the anterior-to-posterior diameter was 13.6 mm in the right eye and 13.4 mm in the left. Meanwhile, ophthalmic ultrasonography showed many bright spots in the vitreous body and a mass near the bottom of the optic disc in each eye, as well as high echo membranous ridge associated with the optic papilla, indicating double amotio retinae (Fig. 2B, data of left eye). The child showed clinical features of typical ND, with normal hearing, normal somatic growth and development, but without mental disability or epileptic seizures. The Wechsler Intelligence Scale for Children language scale gave an intelligence quotient (IQ) of 107, and the infants-junior high school students' social life ability test score was normal.

The second offspring of the couple (Fig. 1, subject III-2) was miscarried at 80 days of pregnancy. The third (Fig. 1, subject III-3) was born at full term with an uncomplicated delivery, and the infant was blind at birth, with bilateral leucocoria, a weak voice, and shortness of breath. Fiberoptic laryngoscopy revealed dysplasia of the laryngeal cartilage. Microphthalmia and vitreous hypertrophy with retinal detachment were detected by ophthalmic ultrasound. The child died of pulmonary bleeding caused by pneumonia at day 26 after birth. For the fourth and fifth fetuses, prenatal diagnosis was performed at Nanfang Hospital, Guangzhou. The fourth offspring (Fig. 1, subject III-4) underwent genetic diagnosis at 24 weeks of pregnancy, and was diagnosed to be normal. He is currently healthy without ND. Recently, the couple presented with a fifth
pregnancy (Fig. 1, subject III-5). The prenatal diagnosis was carried out at 12 weeks of gestation and revealed the same genetic deletion as the proband.

Single nucleotide polymorphism (SNP) array and polymerase chain reaction (PCR)

Blood samples from the proband and the parents, 10 mL of amniotic fluid from the fourth offspring (centrifuged at 10,000 G for 2 minutes), and chorionic villi from the fifth offspring were collected for preparation of genomic DNA (gDNA). Extraction of the gDNA was carried out using the UltraClean BloodSpin DNA Isolation Kit (MO BIO Laboratories, CA, USA) and UltraClean Tissue & Cells DNA Isolation Kit (MO BIO Laboratories, CA, USA). Polymerase chain reaction (PCR) amplifications of exonic NDP regions were undertaken for molecular cytogenetic analysis. A single nucleotide polymorphism (SNP) array, (HumanCytoSNP-12 DNA Analysis BeadChip Kit; Illumina, 5200 Illumina Way, USA) was then used to screen for microdeletions of the X chromosome in the proband, parents, and fetuses. All testing was carried out according to the manufacturer instructions. Downstream data analysis was done using GenomeStudio software (Illumina, 5200 Illumina Way, USA). The deletion was confirmed by quantitative polymerase chain reaction (Q-PCR), with 3 pairs of primers located in MAOB, NDP, and EFHC2 genes, using the FastStart Universal SYBR Green Master kit (Roche Diagnostics, 4070 Basel, CH) on the 7500 Real-Time PCR System (Applied Biosystems, MA, USA). The primer sequences for EFHC2-exon1: forward: 5’CGTCTCCAGGCAACGTG 3’; reverse: 5’CCTCCAGGAGAGTCTCGC3’; the primer sequences for MAOB-exon1: forward: 5’GAGGCCCAGAAAAACGGAG3’; reverse: 5’CCAGGCCAGCCACCTGTC3’; the primer
sequences for \textit{NDP}-exon2: forward: 5’GGATCCTAGGAGGTGAAGCC3’; reverse: 5’TGGCTTCTTG CCTGTTTCTG3’.

3. Results

We carried out SNP array in the proband to look for microdeletions on the X-chromosome; we discovered a novel microdeletion of 494.6kb on Xp11.3 (ChrX: 43721710-44216310). Loss of heterozygosity in this region was also detected in the mother (Fig. 3A, subject II-2), but no deletion was detected at this region in amniotic fluid of the first sibling fetus (Fig. 3A, subject III-4). Looking into this region in the reference genome sequence (National Center for Biotechnology Information, human GRCh37/hg19), we found it encompasses 3 genes: \textit{NDP}, \textit{EFHC2}, and the first exon of \textit{MAOB} (Fig 3B). We then performed q-PCR amplifications on \textit{MAOB}, \textit{NDP}, and \textit{EFHC2} to confirm the contiguous deletion of the 3 genes in the proband (subject III-1) and in the carrier mother (Fig. 4, subject II-2), but not in the father (Fig. 4, subject II-3) or the fourth offspring (Fig. 4, subject III-4). The same microdeletion was detected in the chorionic villi of the fifth offspring (Fig. 3A, subjects III-1 and III-5). Taken together, our results confirm that a microdeletion of 494.6 kb at Xp11.3 is the causal event for the phenotypes seen in this family with Norrie disease.

4. Discussion

Based on previous reports, the “plus” clinical features of ND with contiguous deletions of \textit{NDP}, \textit{MAOA}, \textit{MAOB}, and \textit{EFHC2} include profound psychomotor disabilities, reduced somatic growth, delayed development, microcephaly, cardiovascular abnormalities, myoclonus, epileptic
seizures, and immunodeficiency (Chen et al. 1992; Collins et al. 1992; Gal et al. 1986; Rodriguez-Reyenga et al. 2007; Schuback et al. 1995; Sims et al. 1989; Zhu et al. 1989). However, the genotype-phenotype relation has not been completely elucidated. Deletions in \textit{NDP} gene are considered to be responsible for the typical clinical features of ND, while deletions in \textit{MAOA} and \textit{MAOB} together are responsible for the profound psychomotor disabilities seen with this disease (Chen et al. 1995; Collins et al. 1992; Rodriguez-Reyenga et al. 2007; Saito et al. 2014; Schuback et al. 1995; Sims et al. 1989; Staropoli et al. 2010; Suarez-Merino et al. 2001; Zhu et al. 1989). We found that our proband inherited a causal deletion of a region at Xp11.3 from his mother. This deletion contained \textit{MAOB}, \textit{NDP}, and \textit{EFHC2} genes, but not \textit{MAOA}. Interestingly, the proband we report here shows the typical clinical features of ND, but none of the above “plus-features” of the Norrie-plus syndromes. The clinical features of severe psychomotor disability and microcephaly are reportedly seen in all of the Norrie-plus syndromes that feature microdeletion of both \textit{MAOA} and \textit{MAOB} genes together with \textit{NDP} gene (Chen et al. 1995; Collins et al. 1992; Donnai et al. 1988; Gal et al. 1986; Rodriguez-Reyenga et al. 2007; Schuback et al. 1995; Staropoli et al. 2010; Suarez-Merino et al. 2001; Zhu et al. 1989). Nevertheless, the proband patient lacks these clinical features, suggesting that the “plus-features” are determined by the complementary roles of \textit{MAOA} and \textit{MAOB}. This theory is also supported by a study of \textit{MAOA/B} single- and double-knockout mice (Bortolato et al. 2013). Lenders et al. observed borderline mental retardation and an abnormal behavioral phenotype in patients with selective \textit{MAOA} deficiency and a severe mental retardation in patients with combined \textit{MAOA} and \textit{MAOB} deficiency and Norrie disease. In contrast, \textit{MAOB}-deficient patients exhibit neither abnormal behavior nor mental retardation (Lenders et al. 1996).
Notably, seizure is an atypical clinical feature of ND, with the microdeletion encompassing *NDP*, *MAOA*, *MAOB*, and *EFHC2* (Rodriguez-Revenga et al. 2007). It has been suggested that the underlying causal event for seizure could be deletion of *EFHC2* gene, based on the knowledge of mutations of its homolog, *EFHC1*, in epilepsy patients (Suzuki et al. 2004) and the association of an SNP in *EFHC2* with epilepsy (Gu et al. 2005). Gu and others reported a tentative relation between the S430Y polymorphism of *EFHC2* gene in patients suffering from juvenile myoclonic epilepsy, an Idiopathic generalized epilepsy syndrome (IGE), and epilepsy. However, a recent study discovered that no relation between S430Y polymorphism in *EFHC2* gene and idiopathic generalized epilepsy present (Berrin and other, 2015). In our case, the proband did not have seizures, even though the deleted region contained the full-length *EFHC2* gene. The underlying mechanism of the finding requires further study.

In summary, this is the first observation that microdeletion of 494.6 kb at Xp11.3 (ChrX: 43721710-44216310) can result in ND phenotype. Based on the case of our observation, contiguous deletion with only one of the *MAO* genes (*MAOB*) may not cause psychomotor disability, and deletion of *EFHC2* may not contribute to epilepsy. This information could be helpful in fostering a deeper understanding of the phenotypic variants of microdeletional patients with ND. Further research should look closely into the genotype-phenotype relation.

Acknowledgement

We thank the family who accepted to participate and gave written informed consent for the related information.
Funding

This work was supported by: Science and Technology Program of Guangdong Province (No. 2015B050501006), Chinese National Science Foundation (No. 81571097), The PhD Start-up Fund of Natural Science Foundation of Guangdong Province (No. 2015A030310026), President Foundation of Nanfang Hospital, Southern Medical University (No. 2013C013, 2015Z004) and Academy Foundation of Nanfang Hospital, Southern Medical University (No. 2013018, 2013044).

Conflict of interests

The authors have no conflict of interest.

Figure legends

Figure 1. The pedigree with ND. The 3- generation pedigree: III-1, proband; III-2, miscarriage; III-3, affected and died at day of life 26; III-4, healthy male born after prenatal genetic diagnosis; III-5, male fetus harboring the deletion terminated after genetic counselling; II-2, carrier mother; II-3, normal father.

Figure 2. The Ophthalmic photograph and ultrasonogram of the proband. (A) Ophthalmic photograph of the proband. (B) Ophthalmic ultrasonography of the proband showing a shrunken eyeball, bright spots in the vitreous body, and a mass near the optic disc.

Figure 3. Prenatal genetic diagnosis for molecular cytogenetic variation. (A) Characterization of chromosome X in the proband, mother, and 2 fetuses by scanning
copy-number variations through single nucleotide polymorphism (SNP) array. The proband has a microdeletion of 494.6kb on Xp11.3 (ChrX: 43721710-44216310; III-1, red arrow). The mother has a loss of heterozygosity at this region (II-2, red arrow). The fetus in the first genetic test (III-4, Test 1) is normal, and the fetus in the second test (III-5, Test 2) harbors the microdeletion.

(B) Genomic region ChrX: 43721710-44216310. The deleted region is shown in red on the X chromosome (top). The **MAOB**, **NDP**, and **EFHC2** genes are shown in pink, with both introns and exons.

Figure 4. Validation of the microdeletion using quantitative polymerase chain reaction (q-PCR) amplification. (A) **EFHC2** exon 1. (B) **MAOB** exon 1. (C) **NDP** exon 2. The arrows indicate the amplification curves on the DNA from II-2 (mother), II-3 (father), III-1 (proband), and III-4 (fetus).

Reference

a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAOA and MAOB) genes. Am J Med Genet 42: 127-34. doi: 10.1002/ajmg.1320420126

Figure 1

Unedited Version

[Genogram Diagram]

- Normal female
- X-linked carrier
- Miscarriage
- Affected & terminated
- Normal male
- Proband
- Affected & deceased
- Mating
- Siblings
Figure 3

(a)

III-1 (Proband)

III-2 (Carrier)

III-4 (Test1)

III-5 (Test2)

Click here to download Figure 3A.tif
Figure 4

(a) EFHC2 exon1

(b) MAOB exon1

(c) NDP exon2

Click here to download Figure Figure 4.tif