Morphism of Varieties

Nagaraj, D. S. (IMSc, Chennai)

Institute of Mathematical Sciences

20-November-2011
1. Introduction

2. Polynomials

3. Affine Varieties

4. Varieties

5. Morphism
Contents

1 Introduction

2 Polynomials

3 Affine Varieties

4 Varieties

5 Morphism
Introduction

When two objects are given one would like to compare them and try to see whether all the features of one object is contained in the other.
Introduction

When two objects are given one would like to compare them and try to see whether all the features of one object is contained in the other.

In mathematics objects are sets with some special properties. The comparison takes place via maps between the objects. In different branches of mathematics different kind of maps are considered.
For example in the branch named Topology, an object is a set and a notion of nearness of points in the set is defined. The maps are set maps which are required to be continuous. Continuous means that the maps takes near by points to near by points.
For example in the branch named Topology, an object is a set and a notion of nearness of points in the set is defined. The maps are set maps which are required to be continuous. Continuous means that the maps takes near by points to near by points.

In the branch named Differential Geometry an object is a set with notion of nearness of points and some extra local conditions which give notion of differentiable function on them. The maps between two objects of Differential geometry required to be continuous and they must carry differentiable functions to differentiable functions.
For example in the branch named Topology, an object is a set and a notion of nearness of points in the set is defined. The maps are set maps which are required to be continuous. Continuous means that the maps takes near by points to near by points.

In the branch named Differential Geometry an object is a set with notion of nearness of points and some extra local conditions which give notion of differentiable function on them. The maps between two objects of Differential geometry required to be continuous and they must carry differentiable functions to differentiable functions.

In the branch named Algebraic Geometry an object is a set defined locally by polynomials. The maps are set maps which carry subsets which are defined by polynomials to subsets defined by polynomials.
Among all the maps from the set \mathbb{C}^n, of n-tuples of complex numbers, to the set \mathbb{C}, of complex numbers, polynomial maps are the simplest.
Among all the maps from the set \mathbb{C}^n, of n-tuples of complex numbers, to the set \mathbb{C}, of complex numbers, polynomial maps are the simplest.

The aim of this talk is to introduce the objects in Algebraic Geometry known as Varieties, which are locally defined by polynomials, and the maps between varieties which preserve these local structures.
A monomial in n-variables X_1, \ldots, X_n, over the field \mathbb{C} of complex numbers, is an expression of the form

$$a_{i_1, \ldots, i_n} X_1^{i_1} \cdots X_n^{i_n},$$

where the coefficient $a_{i_1, \ldots, i_n} \in \mathbb{C}$ and i_1, \ldots, i_n are non negative integers.
A monomial in \(n \)-variables \(X_1, \ldots, X_n \), over the field \(\mathbb{C} \) of complex numbers, is an expression of the form

\[a_{i_1, \ldots, i_n} X_1^{i_1} \cdots X_n^{i_n}, \]

where the coefficient \(a_{i_1, \ldots, i_n} \in \mathbb{C} \) and \(i_1, \ldots, i_n \) are non-negative integers.

The non-negative integer \(i_1 + \cdots + i_n \) is called the degree of the monomial.
A monomial in n-variables X_1, \ldots, X_n, over the field \mathbb{C} of complex numbers, is an expression of the form

$$a_{i_1,\ldots, i_n} X_1^{i_1} \cdots X_n^{i_n},$$

where the coefficient $a_{i_1,\ldots, i_n} \in \mathbb{C}$ and i_1, \ldots, i_n are non-negative integers.

The non-negative integer $i_1 + \cdots + i_n$ is called the degree of the monomial.

For example $a \in \mathbb{C}$ is a monomial of degree 0.

$$X_1 X_2, \quad X_1^2$$

are monomials of degree 2.

$$12X_1 X_2 X_3, \quad 15X_1^2 X_3, \quad 18X_3^3$$

are monomials of degree 3.
A polynomial is a finite sum of monomials and its degree is the greatest degree monomial appearing in it. A polynomial is said to be homogeneous, if it is sum of monomials of same degree.
A polynomial is a finite sum of monomials and its degree is the greatest degree monomial appearing in it. A polynomial is said to be homogeneous, if it is sum of monomials of same degree.

\[X^6 + 17X \] is a degree 6 polynomial in one variable.
A polynomial is a finite sum of monomials and its degree is the greatest degree monomial appearing in it. A polynomial is said to be homogeneous, if it is sum of monomials of same degree.

- \(X^6 + 17X \) is a degree 6 polynomial in one variable.
- \(X_1^2X_2 + X_1^2 + 3 \) is a degree 3 polynomial in two variables.
A polynomial is a finite sum of monomials and its degree is the greatest degree monomial appearing in it. A polynomial is said to be homogeneous, if it is sum of monomials of same degree.

- $X^6 + 17X$ is a degree 6 polynomial in one variable.
- $X_1^2X_2 + X_1^2 + 3$ is a degree 3 polynomial in two variables.
- $X_1^2 + \cdots + X_n^2 - 1$ is a degree 2 polynomial in n variables.
A polynomial is a finite sum of monomials and its degree is the greatest degree monomial appearing in it. A polynomial is said to be homogeneous, if it is sum of monomials of same degree.

- $X^6 + 17X$ is a degree 6 polynomial in one variable.
- $X_1^2X_2 + X_1^2 + 3$ is a degree 3 polynomial in two variables.
- $X_1^2 + \cdots + X_n^2 - 1$ is a degree 2 polynomial in n variables.
- $X_1^m + \cdots + X_n^m$ is a homogeneous polynomial of degree m in n variables.
Contents

1 Introduction
2 Polynomials
3 Affine Varieties
4 Varieties
5 Morphism
Let $\mathbb{C}[X_1, \ldots, X_n]$ be the set of all polynomials in n variables over \mathbb{C} and $f(X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n]$.
Let \(\mathbb{C}[X_1, \ldots, X_n] \) be the set of all polynomials in \(n \) variables over \(\mathbb{C} \) and \(f(X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n] \).

The substitution of entries of coordinates of a point of \(\mathbb{C}^n \) in to variables of \(f(X_1, \ldots, X_n) \) define a map

\[
\begin{align*}
 f : \mathbb{C}^n & \to \mathbb{C} : \\
 (a_1, \ldots, a_n) & \mapsto f(a_1, \ldots, a_n).
\end{align*}
\]
Let $\mathbb{C}[X_1, \ldots, X_n]$ be the set of all polynomials in n variables over \mathbb{C} and $f(X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n]$.

The substitution of entries of coordinates of a point of \mathbb{C}^n in to variables of $f(X_1, \ldots, X_n)$ define a map $f : \mathbb{C}^n \to \mathbb{C}$:

$$(a_1, \ldots, a_n) \mapsto f(a_1, \ldots, a_n).$$

These maps are called polynomial maps from \mathbb{C}^n to \mathbb{C}.
Given $f_i(X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n] \ i = 1, \ldots, r.$, the set of common zeros

$$Z(f_1, \ldots, f_s) = \{(a_1, \ldots, a_n) \in \mathbb{C}^n \mid f_i(a_1, \ldots, a_n) = 0, \ i = 1, \ldots, r.\}$$

is called an Affine algebraic set.
Given $f_i(X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n] \; i = 1, \ldots, r$, the set of common zeros

$$Z(f_1, \ldots, f_s) = \{(a_1, \ldots, a_n) \in \mathbb{C}^n | f_i(a_1, \ldots, a_n) = 0, \; i = 1, \ldots, r\}$$

is called an Affine algebraic set.

Using polynomial maps we can define nearness of points of an Affine algebraic set.
Given $f_i(X_1,\ldots, X_n) \in \mathbb{C}[X_1,\ldots, X_n] \; i = 1,\ldots, r$, the set of common zeros

$$Z(f_1,\ldots, f_s) = \{(a_1,\ldots, a_n) \in \mathbb{C}^n|f_i(a_1,\ldots, a_n) = 0, \; i = 1,\ldots, r\}$$

is called an Affine algebraic set.

Using polynomial maps we can define nearness of points of an Affine algebraic set.

An Affine algebraic set $Z(f_1,\ldots, f_s) \subset \mathbb{C}^n$ is said be an Affine variety if it is not a union of two proper Affine algebraic subsets. In other words, if

$$Z(f_1,\ldots, f_s) = Z(h_1,\ldots, h_k) \cup Z(g_1,\ldots, g_l)$$

then either $Z(f_1,\ldots, f_s) = Z(h_1,\ldots, h_k)$ or $Z(f_1,\ldots, f_s) = Z(g_1,\ldots, g_l)$.
Consider $Z(X_1X_2) \subset \mathbb{C}^2$. Then $Z(X_1X_2) = Z(X_1) \cup Z(X_2)$ but $Z(X_1X_2) \neq Z(X_1)$ and $Z(X_1X_2) \neq Z(X_2)$, thus $Z(X_1X_2)$ is not an Affine variety.
Consider \(Z(X_1X_2) \subset \mathbb{C}^2 \). Then \(Z(X_1X_2) = Z(X_1) \cup Z(X_2) \) but \(Z(X_1X_2) \neq Z(X_1) \) and \(Z(X_1X_2) \neq Z(X_2) \), thus \(Z(X_1X_2) \) is not an Affine variety.

Following are some examples of Affine varieties:
Consider $Z(X_1X_2) \subset \mathbb{C}^2$. Then $Z(X_1X_2) = Z(X_1) \cup Z(X_2)$ but $Z(X_1X_2) \neq Z(X_1)$ and $Z(X_1X_2) \neq Z(X_2)$, thus $Z(X_1X_2)$ is not an Affine variety.

Following are some examples of Affine varieties:

- $Z(a_1X_1 + a_2X_2) \subset \mathbb{C}^2 \implies$ line through the origin in \mathbb{C}^2.
Consider $Z(X_1X_2) \subset \mathbb{C}^2$. Then $Z(X_1X_2) = Z(X_1) \cup Z(X_2)$ but $Z(X_1X_2) \neq Z(X_1)$ and $Z(X_1X_2) \neq Z(X_2)$, thus $Z(X_1X_2)$ is not an Affine variety.

Following are some examples of Affine varieties:

- $Z(a_1X_1 + a_2X_2) \subset \mathbb{C}^2 \rightarrow$ line through the origin in \mathbb{C}^2.
- $Z(X_1X_2 - 1) \subset \mathbb{C}^2 \rightarrow$ complex hyperbola.
Consider \(Z(X_1X_2) \subset \mathbb{C}^2 \). Then \(Z(X_1X_2) = Z(X_1) \cup Z(X_2) \) but \(Z(X_1X_2) \neq Z(X_1) \) and \(Z(X_1X_2) \neq Z(X_2) \), thus \(Z(X_1X_2) \) is not an Affine variety.

Following are some examples of Affine varieties:

- \(Z(a_1X_1 + a_2X_2) \subset \mathbb{C}^2 \rightarrow \text{line through the origin in } \mathbb{C}^2 \).
- \(Z(X_1X_2 - 1) \subset \mathbb{C}^2 \rightarrow \text{complex hyperbola} \).
- \(Z(X_1^2 + X_2^2 + X_3^2 - 1) \subset \mathbb{C}^3 \rightarrow \text{complex sphere} \).
If $Z \subset \mathbb{C}^n$ is an Affine variety then by restricting the polynomial functions on \mathbb{C}^n to Z we get maps from Z to \mathbb{C}.
If $Z \subset \mathbb{C}^n$ is an Affine variety then by restricting the polynomial functions on \mathbb{C}^n to Z we get maps from Z to \mathbb{C}.

If X and Y are Affine varieties, then a map $\phi : X \rightarrow Y$ is said to be a morphism of Affine varieties, if ϕ takes (by composition of maps) polynomial functions on Y to polynomial functions on X.
A Variety is obtained by glueing finitely many Affine varieties along suitable proper subsets.
A Variety is obtained by glueing finitely many Affine varieties along suitable proper subsets.

Example: The set \mathbb{P}^n of all one dimensional subspaces of \mathbb{C}^{n+1} has a variety structure. The subset $U_i \subset \mathbb{P}^n$, consists of one dimensional subspaces generated by vectors whose ith coordinate is non zero, can be identified with \mathbb{C}^n. Thus \mathbb{P}^n is obtained by taking $n + 1$ copies of \mathbb{C}^n and identifying them.
The variety \mathbb{P}^n is called the Projective n space. Given a homogeneous polynomial F in $n+1$ variables the polynomial map defined by F takes the value zero at $p \in \mathbb{C}^{n+1} - \{(0, \ldots, 0)\}$ then it is zero on the whole one dimensional subspace generated by p.
The variety \mathbb{P}^n is called the Projective n space. Given a homogeneous polynomial F in $n+1$ variables the polynomial map defined by F takes the value zero at $p \in \mathbb{C}^{n+1} - \{(0, \ldots, 0)\}$ then it is zero on the whole one dimensional subspace generated by p.

If F_1, \ldots, F_s are homogeneous polynomials in $n+1$ variables, then the set of common zeros of F_1, \ldots, F_s in \mathbb{P}^n is denoted by

$$Z(F_1, \ldots, F_s).$$
A subset of \mathbb{P}^n of the form $Z(F_1, \ldots, F_s)$ is called a Projective algebraic set. It is easy to see that any projective algebraic set is a finite union of Affine algebraic sets. A Projective algebraic variety is defined in a similar way as an Affine algebraic variety.
A subset of \mathbb{P}^n of the form $Z(F_1, \ldots, F_s)$ is called a Projective algebraic set. It is easy to see that any projective algebraic set is a finite union of affine algebraic sets. A Projective algebraic variety is defined in a similar way as an Affine algebraic variety.

Fermat curves $Z(X_1^m + X_2^m + X_3^m) \subset \mathbb{P}^2$ and the the Ellipic curves $Z(X_1^2 X_3 - X_2^3 + bX_3^3) \subset \mathbb{P}^2$ are some examples of Projective algebraic varieties.
Contents

1 Introduction
2 Polynomials
3 Affine Varieties
4 Varieties
5 Morphism
Given a variety Z and a point $p \in Z$ we can talk of polynomial functions near p. This is because $p \in U \subset Z$, with U an Affine algebraic set. A local Regular function or a local Algebraic function near p is a function near p which has an expression f/g, where f, g are polynomial functions near p, $g(p) \neq 0$ and $g(q) \neq 0$ at all points q near p.
Morphism of Varieties

Morphism

Given a variety Z and a point $p \in Z$ we can talk of polynomial functions near p. This is because $p \in U \subset Z$, with U an Affine algebraic set. A local Regular function or a local Algebraic function near p is a function near p which has an expression f/g, where f, g are polynomial functions near p, $g(p) \neq 0$ and $g(q) \neq 0$ at all points q near p.

A map $\phi : X \to Y$ between varieties is called a Morphism of varieties, if ϕ takes local algebraic functions on Y to local algebraic functions on X.
My current area of research is to study of morphisms of varieties: Given two varieties one tries to describe all possible morphisms between them, and study the properties of these morphisms.
Thank You.