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Outline

Strongly correlated electron systems:
Overview

Problem:
How to detect the electronic state in nanoscale structures.

Two examples where the usual methods don't work.
Solution:

We showed NMR techniques can be very useful in
such circumstances.



Strongly Correlated Electron Systems

Mutual interaction of electrons dominates their kinetic energies
giving rise to surprisingly rich physics.



High-T . superconductors: strong correlation
in bulk

Berdnoz, Muller (1986) Superconductivity upon doping some
of the best insulators in the world
-- Mott insulators
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Fractional quantum Hall effect — strong
correlation on the nanoscale

Tsui, Stormer, Gossard (1982); Laughlin (1983);
Jain (1989)

v=1

v=1/3
Laughlin
state i

Strongly interacting electrons + Magnetic field
= Weakly interacting Composite Fermions

MAGNETIC FIELD [T]




Problem

Unearthing the strongly correlated electron state in nanoscale
devices is not easy:

(a) Small size hinders the use of bulk probes

(b) Resistance measurement — the commonly employed probe
does not always give clear answers



l. Electrons in quantum point-contacts (QPC)

Van Wees et al., Delft group (1988)
Wharam et al., Cambridge group (1988)

A QPC device
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A QPC acts as a waveguide for
electrons.



. 0.7 effect — strongly correlated electrons
in QPCs

Thomas et al., Cambridge group (1996)

The 0.7 conductance anomaly in quantum point-contact devices
is an unresolved mystery more than 10 years after discovery.

* Cannot be explained by assuming
non-interacting electrons.

sample B
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* Presently three serious contending scenarios
— each substantially explains observed
transport properties.

* Three scenarios: Are we seeing a spontaneous
spin-splitting or a Kondo effect or a
spin-incoherent Luttinger liquid (SILL)?
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Il. Kondo and RKKY effects in nanoscale devices

High T - weak coupling Low T - sirong coupling Jeong et al., SCience (2001)
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4 h Fig. 3. Differential conductance traces from 1
to 6 in Fig. 2 B. Trace 4 and 6 are magnified by
a factor of 2. The occurrence of Kondo reso-
nance peaks is well contrasted. The periodicity
is consistent with the diagram in Fig. 2A. A
unique feature of the Kondo resonance peaks is
their spitting, as compared with the single
peaks from single dots (e.g., Fig. 1B).

Impurity interaction through

conduction electrons - RKKY Competition of Kondo and RKKY



II. Kondo lattice scenario in 2D semiconductor
heterostructures

Spontaneous formation of a 2D Kondo lattice in a semiconductor
heterostructure has been proposed recently.
Can we rely on the usual probe (resistance measurement)?

Kondo ZBA? RKKY-split ZBA?

didv * Observation of alternating splitting and
7/\0-19% merging of Zero Bias Anomaly — Kondo lattice?
o,

* Two-impurity or few-impurity picture also leads
to same result. Need additional handle.

C. Siegert et al. Nature Phys. (2007);
Cambridge and IISc groups.



Proposed Solution

We showed that a suitably-adapted NMR probe can help
unearth the strongly correlated electron state.



l. 0.7 effect in QPC devices



Resistive detection of nuclear polarisation
N. Cooper and V. T., PRB (2008)

Non-interacting electrons:
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Exchange-enhanced spin-splitting scenario

Wang & Berggren (1996), Bruus et al. (2001),
Spivak & Zhou (2000)

Phenomenological model: Ly=2,+yn  [D.Reilyetal, PRB (2005)]
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[N. Cooper and V. T. (2008)]



Exchange-enhanced spin-splitting scenario

Wang & Berggren (1996), Bruus et al. (2001),
Spivak & Zhou (2000)

Phenomenological model: Ly=2,+yn  [D.Reilyetal, PRB (2005)]
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Double peak structure indicates exchange
enhanced spin splitting



Kondo scenario

Cronenwett et al., PRL (2002) Meir, Hirose, Wingreen, PRL (2002)
Rejec & Meir, Nature (2006)

00— Nuclear spin relaxation in QPC is dominated
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. . . Kondo scenario

High temperature (weak coupling)
limit 7> 7,~¢.exp[1/J V]

[Gotze & Wélfle, JLTP (1975)]

Low temperature (local
Fermi liquid) limit T< 7T, ~ec.exp[1/J v]

[Shiba, Prog. Theor. Phys. (1975)]

X. - Kondo impurity susceptibility

imp

B AS85(S+1)
3mh(k,T)[Jv]

Kondo impurity is characterised by non-monotonic temperature

dependence.



Spin-incoherent Luttinger liquid (SILL)

[Matveev, PRL (2004)]

J Lk, T<e,

Temperature high compared to inter-electron exchange interaction

Low energy spin-flip excitations of a spin chain with lattice
constant 7/n, gap J_ and high temperature:
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The SILL is characterised by weak temperature dependence.



Il. Probing magnetic order
in a 2D electron gas

K. Dhochak and V. T., Phys. Reuv. Lett. (2009)



Exploit the main physical difference

Low energy (long wavelength) magnetic excitations are possible.
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Results

FM

AFM

Double

impurity

Linear-T" at low temp.
and 1/T at high temp.

Zero at low temp. and
1/T at high temp.

Lattice

T/(T —T.)**? at high
temp. and exp(1/T) at
low temp.

T/(T —1T¢) at high
temp. and exp(1/T)
at low temp.




Summary

 NMR can provide an additional handle for probing the electronic
state in mesoscopic devices — transport measurements are not
always reliable.

* Quantum point contact: NMR shows qualitative differences for
the three proposed scenarios — density dependent spin-splitting,
Kondo effect and spin-incoherent Luttinger liquid.

» 2D electron gas: NMR can distinguish between a double impurity
picture and a Kondo lattice picture. In comparison zero bias anomaly
signatures are the same.



