Stochastic Approximation Algorithms with Set-Valued Maps

Shalabh Bhatnagar

Computer Science and Automation

Indian Institute of Science

Bangalore

November 10, 2019
Outline

1. Optimization under noise
2. Stochastic approximation algorithms
3. Random Directions Stochastic Approximation (RDSA)
4. Gradient algorithms with set-valued maps and their analysis
5. Ongoing and future work
Consider a repeated experiment that gives i.i.d input-output pairs \((X_n, Y_n), n \geq 0\), in real time.

Goal: Find a best parameterized fit

\[Y_n = f_w(X_n) + \epsilon_n, \]

i.e., one with the least \(g(w) = \frac{1}{2}E[\| \epsilon_n \|^2]\)

\(f_w\) could correspond to polynomials, neural networks, splines, wavelets etc.

Note \(\nabla g(w) = -E[\langle Y_n - f_w(X_n), \nabla f_w(X_n) \rangle]\)

\(^1\)V.S.Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint, Cambridge Univ Press, 2008
Problem: Cannot find the expectation

Solution: Drop the expectation!

Gradient Scheme with Noise:

\[w_{n+1} = w_n + a(n) < Y_n - f_{w_n}(X_n), \nabla f_{w_n}(X_n) > \]

\[= w_n + a(n)(-\nabla g(w_n) + M_{n+1}), \]

where \(M_{n+1} \) is the noise term

Algorithms of this type are called Stochastic Approximation Algorithms
Objective: Solve the equation $J(x) = 0$ when analytical form of J is not known, however, ‘noisy’ measurements $J(x) + M_{n+1}$ can be obtained

\begin{equation}
x_{n+1} = x_n + a(n)(J(x_n) + M_{n+1})
\end{equation}

The Robbins-Monro Algorithm:

A Convergence Result

(C1) \(J : \mathcal{R}^N \to \mathcal{R}^N \) is Lipschitz continuous

(C2) \(\sum_n a(n) = \infty, \sum_n a(n)^2 < \infty \)

(C3) \(M_{n+1}, n \geq 0 \) is a martingale difference w.r.t. \(\{\mathcal{F}_n \triangleq \sigma(x_m, M_m, m \leq n)\} \). Further, for some \(K > 0 \),

\[
E[\| M_{n+1} \|^2 | \mathcal{F}_n] \leq K(1 + \| x_n \|^2)
\]

(C4) \(\sup_n \| x_n \| < \infty \) almost surely

- Let \(x^* \) be the unique globally asymptotically stable attractor for the ODE \(\dot{x}(t) = J(x(t)) \). Then

- **Theorem** (Convergence of SAA): Under (C1)–(C4), \(\{x_n\} \) converges almost surely to \(x^* \).

Let $J : \mathcal{R}^N \to \mathcal{R}$ be a given objective function having the form $J(x) = E_\mu[h(x, \mu)]$, where μ denotes ‘noise’ and $E_\mu[\cdot]$ is the expectation under that noise.

Goal: Find $x^* \text{ s.t. } J(x^*) = \min_{x \in \mathcal{R}^N} J(x)$.
Run two simulations with parameters

\[x + \delta d = \begin{pmatrix} x^1 + \delta d^1 \\ x^2 + \delta d^2 \\ \vdots \\ x^N + \delta d^N \end{pmatrix}, \quad x - \delta d = \begin{pmatrix} x^1 - \delta d^1 \\ x^2 - \delta d^2 \\ \vdots \\ x^N - \delta d^N \end{pmatrix} \]

where \(d^1, \ldots, d^N \) are independent random variables with distribution \(U[-\eta, \eta] \)

Gradient Estimator:

\[\hat{\nabla} J(x) = \frac{3}{\eta^2} \frac{d}{2\delta} \frac{J(x + \delta d) - J(x - \delta d)}{2\delta} \]

Hessian Estimator for RDSA

- Hessian Estimator:

\[
\hat{\nabla}^2 J(x) = \frac{9}{2\eta^4} R \left(\frac{J(x + \delta d) + J(x - \delta d) - 2J(x)}{\delta^2} \right),
\]

where

\[
R = \begin{bmatrix}
\frac{5}{2}(d^1)^2 - \eta^2 / 3 & \ldots & d^1 d^N \\
\ldots & \ddots & \ldots \\
\ldots & \ldots & \frac{5}{2}(d^N)^2 - \eta^2 / 3
\end{bmatrix}.
\]
Main Convergence Result

- **RDSA Algorithm:**
 \[x_{n+1} = x_n - a(n)\Gamma(\hat{\nabla}^2 J(x_n))^{-1}\hat{\nabla} J(x_n) \]
 except that \(\delta \) is replaced with \(\delta_n \downarrow 0 \) and
 \[\sum_n a(n) = \infty; \quad \sum_n \left(\frac{a(n)}{\delta_n} \right)^2 < \infty \] (2)

- Let \(x^* \) be the unique globally asymptotically stable equilibrium of the ODE
 \[\dot{x}(t) = -\Gamma(\nabla^2 J(x))^{-1}\nabla J(x) \]

- Let \(a(n) = 1/n^\alpha \) and \(\delta_n = 1/n^\gamma \) with \(\alpha - \gamma > 0.5 \) and \(\beta \triangleq \alpha - 2\gamma > 0 \)

- **Theorem:** Under (C1) on \(\nabla J \), (2), (C3) and (C4)
 1. \(x_n \xrightarrow{a.s.} x^* \)
 2. \(n^{\beta/2}(x_n - x^*) \xrightarrow{dist} \mathcal{N}(\mu, \Omega) \)
Sufficient Conditions for Stability of SA^5

(C5)

(i) $J_c(x) \overset{\triangle}{=} J(cx)/c, \ c \geq 1$ satisfies $J_c \rightarrow J_\infty$, for some $J_\infty : \mathcal{R}^N \rightarrow \mathcal{R}^N$ uniformly on compacts

(ii) The origin in \mathcal{R}^N is a unique globally asymptotically stable equilibrium for the ODE $\dot{x}(t) = J_\infty(x(t))$

(iii) There is a unique globally asymptotically stable equilibrium $x^* \in \mathcal{R}^N$ for the ODE $\dot{x}(t) = J(x(t))$

The Stability Theorem: Under (C1)-(C3), (C5), for any initial condition $x_0 \in \mathcal{R}^N$, $\sup_n \| x_n \| < \infty$ a.s. Further, $x_n \overset{a.s.}{\rightarrow} x^*$.

Let $\hat{\nabla} J(x)$ denote an estimator for $\nabla J(x)$ s.t.

$$\| \hat{\nabla} J(x) - \nabla J(x) \| \leq \epsilon(\delta) \to 0 \text{ as } \delta \to 0$$

Consider the recursion $x_{n+1} = x_n - a(n)(\nabla J(x_n) + \epsilon_n)$, where $\| \epsilon_n \| \leq \epsilon \ \forall n$

A set-valued map h is called Marchaud if

- $h(x)$ is convex and compact for each x
- $\sup_{w \in h(x)} \| w \| \leq K(1 + \| x \|)$ for each x
- h is upper-semicontinuous, i.e., given $\{x_n\} \subset \mathbb{R}^n$ and $\{y_n\} \subset \mathbb{R}^m$ with $x_n \to x$ and $y_n \to y$ with $y_n \in h(x_n)$, $\forall n$, we have $y \in h(x)$
Consider the differential inclusion (DI) in \mathbb{R}^d:

$$\dot{x}(t) \in H(x(t)), \quad (3)$$

where $H : \mathbb{R}^d \to \{\text{subsets of } \mathbb{R}^d\}$ is Marchaud. Then the above DI has at least one solution x and each solution is absolutely continuous.\(^8\)

The Set-Valued Semiflow Φ associated with (3) is defined on $[0, \infty) \times \mathcal{R}^d$ as

$$\Phi(t, x) = \{x(t) \mid x \in \Sigma, x(0) = x\},$$

where Σ is the set of all absolutely continuous solutions to (3).

For $B \times L \subset [0, \infty) \times \mathcal{R}^d$, let

$$\Phi(B, L) = \bigcup_{t \in B, x \in L} \Phi(t, x)$$
$M \subset \mathbb{R}^d$ is invariant if for every $x \in M$, there exists $x \in \Sigma$ s.t. $x(t) \in M \ \forall t$ with $x(0) = x$
Attractor of a DI

- $A \subset \mathcal{R}^d$ is attracting if it is compact and there exists a neighborhood U such that for any $\epsilon > 0$, $\exists T(\epsilon) \geq 0$ with
 $\Phi([T(\epsilon), \infty), U) \subset N^\epsilon(A)$

If the above A is invariant, it is called an attractor
An Alternative View of Algorithm

- Recall the recursion

\[x_{n+1} = x_n - a(n)(\nabla J(x_n) + \epsilon_n), \]

where \(\| \epsilon_n \| \leq \epsilon \ \forall n \)

- Alternatively consider

\[x_{n+1} = x_n - a(n)g(x_n), \quad (4) \]

where \(g(x_n) \in G(x_n) \ \forall n \) and \(G(x) \triangleq \nabla J(x) + \bar{B}_\epsilon(0) \), i.e., gradient estimate lies in an \(\epsilon \)-ball around true gradient
Assumptions

- **(A1)** ∇J is a continuous function s.t. $\| \nabla J(x) \| \leq K(1 + \| x \|)$ for all $x \in \mathbb{R}^d$, $K > 0$

- **(A2)** $a(n) > 0 \forall n$ with

\[
\sum_n a(n) = \infty, \quad \sum_n a(n)^2 < \infty
\]

- Can show that G is upper-semicontinuous

- Let $G_c(x) \triangleq \{ \frac{y}{c} \mid y \in G(cx) \}$

- Let $G_\infty(x) \triangleq \bar{co}(\text{Limsup}_{c \to \infty} G_c(x))$, where $\text{Limsup}_{c \to \infty} G_c(x) \triangleq \{ y \mid \liminf_{c \to \infty} d(y, G_c(x)) = 0 \}$
Lemma 1 The map $x \mapsto G_{\infty}(x)$ is Marchaud

Thus, $\dot{x}(t) \in -G_{\infty}(x(t))$ has at least one solution and which is absolutely continuous

(A3) $\dot{x}(t) \in -G_{\infty}(x(t))$ has an attractor set A such that $A \subset B_{a}(0)$ for some $a > 0$ and $B_{a}(0)$ is a fundamental neighborhood of A

(A4) Let $c_{n} \geq 1$ be an increasing sequence of integers such that $c_{n} \uparrow \infty$ as $n \uparrow \infty$. Let $x_{n} \to x$ and $y_{n} \to y$ as $n \uparrow \infty$, such that $y_{n} \in G_{c_{n}}(x_{n}), \forall n$, then $y \in G_{\infty}(x)$
The Stability Result

- **Theorem 1** Under (A1)-(A4), the iterates (4) are stable i.e.,
 $\sup_n \| x_n \| < \infty$ a.s.

- Now recall that $G(x) = \nabla J(x) + \bar{B}_\epsilon(0)$

- Let the minimum set M of J be the global attractor of
 $\dot{x}(t) = -\nabla J(x(t))$

- It can be shown that any compact set K with $M \subset K \subset \mathbb{R}^d$ is a
 fundamental neighborhood of M

- From Theorem 1, $\bar{x}(t) \in K_0 \ \forall t \geq 0$ for some (possibly sample path
 dependent) compact set K_0 which then is a fundamental neighborhood of M
The Main Result

Theorem 2 Given $\delta > 0$, there exists $\epsilon(\delta) > 0$ such that (4) converges to $N(\delta)(M)$ provided $\epsilon \leq \epsilon(\delta)/2$
Related Recent Work

- A general stochastic recursion with set-valued maps and Markov noise

 $$x_{n+1} = x_n + a(n)(h(x_n, Z_n) + M_{n+1})$$

- General convergence with Z_n non-ergodic, iterate-dependent, Markov process [V.Yaji and SB, *Stochastics*, 2018]

- Two-timescale stochastic recursions with Markov noise

 $$x_{n+1} = x_n + a(n)(h(x_n, y_n, Z^1_n) + M^1_{n+1})$$
 $$y_{n+1} = y_n + b(n)(g(x_n, y_n, Z^2_n) + M^2_{n+1})$$

- Z^1_n, Z^2_n independent non-ergodic iterate-dependent Markov processes, M^1_{n+1}, M^2_{n+1} independent martingale differences, $a(n) = o(b(n))$, h, g point-to-point maps – analysis and application to reinforcement learning [P.Karmakar and SB, *Math of OR*, 2018]

- Analysis under set-valued h, g [V.Yaji and SB, *Math of OR*, 2019]
Ongoing and Future Work

- Finding minima of non-differentiable functions under noise
- Algorithms for convergence to global minima
- Asynchronous update algorithms
- Reinforcement learning algorithms for partially observed Markov decision processes
- Analysis of deep reinforcement learning algorithms
- Applications in robotics, microgrids, vehicular traffic control etc.