Quantum Zeno effect: a watched pot never boils!

Anu Venugopalan

Presenter Rohini M. Godbole
Centre for High Energy Physics, IISc, Bangalore, India
The Quantum Zeno Effect

A nu Venugopal an
University School of Basic and Applied Sciences
Guru Gobind Singh Indraprastha University
Dwarka, New Delhi

Life and Work of Prof. ECG Sudarshan
Annual Meeting - Indian Academy of Sciences - University of Hyderabad - 9-11-2019
“The Zeno’s Paradox in quantum theory” B. Misra and E. C. G. Sudarshan
Journal of Mathematical Physics 18, 756 (1977)

The Zeno’s paradox in quantum theory

B. Misra and E. C. G. Sudarshan*

Center for Particle Theory, University of Texas at Austin, Austin, Texas 78712
(Received 24 February 1976)

We seek a quantum-theoretic expression for the probability that an unstable particle prepared initially in a well defined state \(\rho \) will be found to decay sometime during a given interval. It is argued that probabilities like this which pertain to continuous monitoring possess operational meaning. A simple natural approach to this problem leads to the conclusion that an unstable particle which is continuously observed to see whether it decays will never be found to decay! Since recording the track of an unstable particle (which can be distinguished from its decay products) approximately realizes such continuous observations, the above conclusion seems to pose a paradox which we call Zeno’s paradox in quantum theory. The relation of this result to that of some previous works and its implications and possible resolutions are briefly discussed. The mathematical transcription of the above-mentioned conclusion is a structure theorem concerning semigroups. Although special cases of this theorem are known, the general formulation and the proof given here are believed to be new. We also note that the known “no-go” theorem concerning the semigroup law for the reduced evolution of any physical system (including decaying systems) is subsumed under our theorem as a direct corollary.

1. INTRODUCTION

The object of this paper is to discuss a seemingly paradoxical result in quantum theory concerning temporal evolution of a dynamical system under continuous observation during a period of time. For reasons that will become clear shortly we call this complex of deductions Zeno’s paradox in quantum theory.

Consider the following probabilities for which the theory has no ready expressions:

1. The probability that the system in the undecayed state \(\rho \) at time 0 is found to during the interval \(\Delta = [0, t] \). We denote it by \(Q(0, t; \rho) \).

2. The probability \(Q(0, t; \rho) \) that no
Zeno of Elea was a pre-Socratic Greek philosopher of southern Italy and a member of the Eleatic School founded by Parmenides. He is best known for his paradoxes, which Bertrand Russell has described as "immeasurably subtle and profound."

Four paradoxes of motion

- Achilles and the tortoise
- The arrow
- The dichotomy
- The sophisticated stadium
Achilles and the tortoise
The Arrow
The dichotomy
The sophisticated stadium
Zeno’s paradoxes remained unresolved for over 2,500 years - satisfactory resolutions came after the development of the concepts of real numbers, calculus of infinitesimals (Newton, Leibniz), functions, limits continuity, infinite series convergence, etc.

Attempts to understand Zeno’s paradoxes by philosophers helped shape modern concepts and definitions. Our ideas of space, time, motion, infinite, infinitesimal, line, point, derivative and measure would not be the same without Zeno’s input - in 2000 years, his arguments contributed to the foundations of modern mathematics.
1977 The return of Zeno

- in a scenario involving the time evolution of a quantum system which is subject to “observations” over a period of time

Misra & Sudarshan introduced the name “Zeno’s paradox” for the effect studied in their Journal of Mathematical Physics paper (1977) - their groundbreaking result activated over three decades of theoretical and experimental explorations into the subject.

Quantum Zeno Effect (QZE)

common term used to describe similar situations in various quantum systems

Misra and Sudarshan were the first to call the effect by the name “Zeno”, but closely related work was done earlier in 1957 by L A Khalfin working in the USSR

J. Von Neumann “Mathematical Foundations of Quantum Mechanics” (1955)
“The Zeno’s Paradox in quantum theory”
B. Misra and E. C. G. Sudarshan
Journal of Mathematical Physics 18, 756 (1977)

The quantum Zeno effect is the name used to refer to the inhibition of transitions between quantum states due to frequent measurements.

Measurements in quantum mechanics
Quantum Measurement

Quantum Mechanics - currently accepted as the most elegant and satisfying description of phenomena at the atomic scale - the fundamental theory of nature. Stunningly powerful but counterintuitive - compels us to reshape our ideas of reality and notions of cause, effect and measurement.

An unobserved particle does not possess physical properties that exist independent of observation.

The act of measurement on a system disturbs the quantum state of the system.

This standard interpretation of quantum measurement is attributed to von Neumann (1932).
Quantum Measurement

quantum system → $|\psi\rangle$ → state vector in Hilbert space

$i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle$

Linear
Deterministic
Unitary

dynamical variables
“observables”

\hat{A}

linear Hermitian operator that acts on the state vector

eigenvalues $\{a_i\}$
eigenvectors $\{|\alpha_i\rangle\}$

$\hat{A} |\alpha_i\rangle = a_i |\alpha_i\rangle$
Quantum Measurement

A measurement of \hat{A} on the state $|\psi\rangle$

$$|\psi\rangle = \sum c_i |\alpha_i\rangle$$

Upon a measurement of \hat{A} only one of the eigenvalues, a_i, will be obtained, with probability $|c_i|^2$.

Measue the ment of the observable \hat{A} is followed by a collapse of the state vector $|\psi\rangle$ to the eigenstate $|\alpha_i\rangle$.

Measurement of an observable culminates with the state collapsing to one of the eigenstates

Non-unitary

Projection postulate (von Neumann)
The Quantum Zeno Effect (QZE) is a name given to the phenomenon of the inhibition of (spontaneous or induced) transitions between quantum states by frequent measurements. In their study, Misra and Sudarshan looked at an unstable quantum system and concluded that if an unstable quantum system is kept under continuous observations, it does not decay!

\[
\psi_0 \quad \text{(initial state of the quantum system ("undecayed"))} \\
\psi(t) \quad \text{(state of the quantum system after time } t) \\
U(t) = e^{-iHt} \\
P(t) = |\langle \psi_0 | U(t) | \psi_0 \rangle|^2
\]
\[P(t) = \left| \langle \psi_0 | e^{-iHt} | \psi_0 \rangle \right|^2 \approx 1 - t^2 \Delta H^2 + \ldots \]

\[\Delta H = \sqrt{\langle \psi_0 | H^2 | \psi_0 \rangle - \langle \psi_0 | H | \psi_0 \rangle^2} \]

\[P(t) \approx 1 - \frac{t^2}{\tau_Z^2} \Delta H^2 + \ldots \]

At short times the survival probability deviates from the exponential law and is \textit{quadratic} in time.

\[P(t) \approx 1 - \frac{t^2}{\tau_Z^2} ; \quad \tau_Z = \frac{1}{\Delta H} \]
continuously “observing” the system
frequent quantum measurements

make N equally spaced instantaneous measurements over a time period [0, T]

\[T = N\tau \]
\(\tau \): time between two measurements

0 \[\overbrace{\hphantom{\frac{T}{N}}}^{T/N} \frac{T}{N} \frac{2T}{N} \frac{3T}{N} \frac{4T}{N} \frac{5T}{N} \overbrace{\hphantom{\frac{T}{N}}}^{(N-1)T/N} \]

measurements \[\rightarrow\] Projection postulate (von Neumann)
what is the survival probability after N measurements at time intervals \(\tau = T/N \) to check whether the system is still in its initial state \(|\psi_0\rangle \)?

After each measurement the system's state is “projected” back onto its initial state \(|\psi_0\rangle \) and the time evolution starts anew with initial condition \(|\psi_0\rangle \)

The survival probability at the end of the interval T is

\[
P^N(T) = P(\tau)^N = P\left(\frac{T}{N}\right)^N \approx \left(1 - \frac{T^2}{N^2 \tau_Z^2}\right)^N
\]

\[
\lim_{N \to \infty} P^N(T) \to 1
\]

continuous measurements arrests the time evolution, “freezing” the system in its initial state - the quantum Zeno effect

1. quadratic short time behaviour of the survival probability

2. continuous quantum measurements as von Neumann projections (wave function collapse)
Can we see the QZE in an experiment?

This effect (inhibition of spontaneous decay) could be very difficult to access experimentally – the interval during which the probability grows quadratically is very short compared to the time required to make a measurement.
The quantum Zeno effect was observed in induced transitions between quantum states.

Transitions between the ground state hyperfine levels of cooled and trapped Beryllium ions.
The experiment of Itano, et al at NIST Colorado (1990)
Proposal by Cook (1988)
The experiment of Itano, et al at NIST Colorado (1990)
Proposal by Cook (1988)

A two-level quantum system in the presence of a resonant driving field
Rabi Oscillations between levels 1 and 2

\[\Omega = \frac{E_2 - E_1}{\hbar} \]

<table>
<thead>
<tr>
<th>Probability for the system to be in level 1 or level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>[P_1(t) = \cos^2\left(\frac{\Omega t}{2}\right)]</td>
</tr>
<tr>
<td>[P_2(t) = \sin^2\left(\frac{\Omega t}{2}\right)]</td>
</tr>
</tbody>
</table>
continuously “observing” the system
frequent quantum measurements

make N equally spaced measurements over a time period [0, T]

\[T = \frac{\pi}{\Omega} \]

\(\pi \) pulse

0 \hline T
\hline
\frac{T}{N} \quad \frac{2T}{N} \quad \frac{3T}{N} \quad \frac{4T}{N} \quad \frac{5T}{N} \quad \frac{(N - 1)T}{N}
How were these measurements done?

![Energy level diagram]

1. Measurement pulse
2. E₁ (initial state)
3. E₃ (energy level)
4. E₂ (metastable state)

Life and Work of Prof. ECG Sudarshan
Annual Meeting - Indian Academy of Sciences - University of Hyderabad - 9-11-2019
make N equally spaced measurements over a time period \([0, T]\), the time duration of a \(\pi\) pulse

At the end of N “measurements”

\[
P_2(t) = \frac{1}{2} \left[1 - \cos^N \left(\frac{\pi}{N} \right) \right]
\]

In the limit of large N (continuous measurements)

\[
P_2(t) = \lim_{N \to \infty} \frac{1}{2} \left[1 - \cos^N \left(\frac{\pi}{N} \right) \right] \to 0
\]

Continuous measurements inhibit the transition from 1 to 2

The Quantum Zeno Effect

FIG. 3. Graph of the experimental and calculated 1 \(\to\) 2 transition probabilities as a function of the number of measurement pulses \(n\). The decrease of the transition probabilities with increasing \(n\) demonstrates the quantum Zeno effect.
The key to the success of the NIST experiment (the first direct demonstration of the QZE) is that in the quantum system chosen, the transition from one state to the other was slow enough to make a large number of “measurements”.

![Energy level diagram]

- Energy level E_3
- Energy level E_2 (metastable state)
- Energy level E_1

Measurement pulse $\sim 2.4\text{ms}$
The result of Kurizi and Kofman
“Acceleration of quantum decay processes by frequent observations”

whereas the inhibitory quantum Zeno effect may be feasible in a limited class of systems, the opposite effect—accelerated decay—appears to be much more ubiquitous. The Zeno and anti-Zeno effects had not yet been observed in any spontaneously decaying system.

Sodium atoms trapped in a light wave - these atoms can escape only by quantum mechanical tunnelling. Left to its own devices, the system would decay slowly, with sodium atoms tunnelling across the barrier every now and then. When the system was observed every millionth of a second, the tunnelling rate slowed significantly. When they took measurements every five millionths of a second, tunnelling speeded up - Zeno- and Anti-Zeno-Effects

Sudarshan’s students Modi and Shaji theoretically modeled and reproduced all the results of this Quantum Zeno experiment (2004)
QZE - implications and potential applications

Misra and Sudarshan’s 1977 paper captured the imagination of the physics community, activating decades of theoretical and experimental explorations into the subject. Its implications range from the philosophical to the practical.

The quantum Zeno effect provides a fascinating insight into the foundational aspects of quantum mechanics, in particular, the quantum theory of measurement and its varied interpretations.

Today, Misra and Sudarshan’s groundbreaking result has found relevance in experiments that control quantum dynamics in quantum information processing applications and could play a role in quantum computing.

QZE could be a possible tool in the fight against decoherence, which has been the most crippling challenge of when it comes to storing a quantum state.
While in the classical world, Achilles overtakes the tortoise and all is well with the world, in the mysterious land of the quantum, watched pots stop boiling (or boil faster, maybe!) and the ghost of Zeno continues to make its presence felt in unimaginably interesting ways.