• Vivekanand Bhatt

      Articles written in Sadhana

    • RF sputtering: A viable tool for MEMS fabrication

      Sudhir Chandra Vivekanand Bhatt Ravindra Singh

      More Details Abstract Fulltext PDF

      Fabrication of Micro-Electro-Mechanical-Systems (MEMS) requires deposition of films such as SiO2, Si3𝑁4, ZnO, polysilicon, phosphosilicate glass (PSG), Al, Cr-Au, Pt, etc. for use as structural, sacrificial, piezoelectric and conducting material. Deposition of these materials at low temperature is desirable for fabricating sensors/actuators on temperature-sensitive substrates and also for integrating MEMS structures on silicon in post-CMOS processing procedures. Plasma enhanced chemical vapour deposition (PECVD) and sputtering are amongst potential techniques for preparing films for MEMS fabrication at comparatively low temperatures. The sputtering technique has an added advantage that the process is carried out in an inert ambient (argon) and chemically sensitive substrate/sacrificial layers can be used in realization of MEMS. Furthermore, the same system can be used for depositing dielectric, piezoelectric and conducting materials as per requirement in the fabrication sequence. This enables rapid low-cost prototyping of MEMS with minimum fabrication facilities.

      In the present work, we report preparation, characterization and application of RF sputtered SiO2, Si3𝑁4 and ZnO films for MEMS fabrication. The effect of RF power, sputtering pressure and target-to-substrate spacing was investigated on the structural and other properties of the films. The residual stress in the films was obtained using wafer curvature measurement technique. The deposition parameters are optimized to obtain low stress films of SiO2 and Si3𝑁4. The self-heating of the substrate during deposition was advantageously exploited to obtain highly 𝑐-axis oriented films of ZnO without any external heating. A variety of MEMS structures such as cantilever beams, micro-bridges, diaphragms, etc. are demonstrated using bulk, surface and surface-bulk micromachining techniques.

    • Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining

      Vivekanand Bhatt Sudhir Chandra Chatar Singh

      More Details Abstract Fulltext PDF

      In this paper, we explore RF magnetron sputtered Phosphor–silicate–glass (PSG) film as a sacrificial layer in surface micromachining technology. For this purpose, a 76 mm diameter target of phosphorus-doped silicon dioxide was prepared by conventional solid-state reaction route using P2𝑂5 and SiO2 powders. The PSG films were prepared in a RF (13·56 MHz) magnetron sputtering system at 300 watt RF power, 20 mTorr pressure and 45 mm target-to-substrate spacing without external substrate heating. Microstructures of sputtered silicon dioxide film were fabricated using sputtered PSG film as sacrificial layer in surface micromachining process.

  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.