• Tapas Karmaker

      Articles written in Sadhana

    • Sediment transport in an active erodible channel bend of Brahmaputra river

      Tapas Karmaker Y Ramprasad Subashisa Dutta

      More Details Abstract Fulltext PDF

      Spatial variation of sediment transport in an alluvial sand-bed river bend needs to be understood with its influencing factors such as bank erosion, secondary current formation, land spur and bed-material characteristics. In this study, detailed hydrographic surveys with Acoustic Doppler Current Profiler (ADCP) were conducted at an active erodible river bend to measure suspended load, velocity, bathymetric profile and characteristics of the bed material. Study indicates the presence of multi-thread flow in the channel bend. Local variation of sediment transport is primarily controlled by active bank erosion, land spur and sand bar formation. Vertical distribution of suspended sediment concentration follows a power function with normalized depth. Average bed-material concentration at the reach level is computed from observed sediment profiles, and is compared against various sediment transport functions. Results show that the sediment transport function suggested by Yang gives better predictions for this reach. Transverse bed slopes at critical survey transects were computed from the bathymetric data and evaluated with analytical approaches. Out of three analytical approaches used, Odgaard’s approach estimates the bed slopes fairly close to the observed one. These two functions are suitable in the Brahmaputra river for further morphological studies.

    • Estimation of riverbank soil erodibility parameters using genetic algorithm

      TAPAS KARMAKER RANJAN DAS

      More Details Abstract Fulltext PDF

      Determination of the erodibility parameters, such as critical shear stress and erodibility coefficient, are necessary before estimating the annual bank erosion (or bank retreat) at river reaches. However, in many cases, the river site is inaccessible making it difficult to assess the soil parameters either by in situ tests or by laboratory experiments. In this study, Genetic Algorithm (GA)-based optimisation technique was used to estimate the erodibility parameters of middle reaches of the Brahmaputra River in India. Two approaches were followed. At first, erodibility parameters were estimated using daily stage records at a selected site. Secondly, based on the annual observed bank erosions (bank retreat) from satellite images, erodibility parameters were estimated in three different river reaches. All these results were compared with that from a previous study usingin situ jet tests. Annual bank erosions (bank retreat) were estimated using the median values of the erodibility parameters. The results agree well with the average observed annual bank erosion of these river reaches. In addition, the effects of measurement errors and optimisation algorithms on the parameter estimation were analysed. Sensitivity analysis of the parameters in GA was evaluated and it was found that GA can be utilised in the data-scarce regions to estimate the average erodibility parameters

© 2017 Indian Academy of Sciences, Bengaluru.