• M Pakdemirli

      Articles written in Sadhana

    • Entropy generation in non-Newtonian fluid flow in a slider bearing

      M Pakdemirli B S Yilbas M Yurusoy

      More Details Abstract Fulltext PDF

      In the present study, entropy production in flow fields due to slider bearings is formulated. The rate of entropy generation is computed for different fluid properties and geometric configurations of the slider bearing. In order to account for the non-Newtonian effect, a special type of third-grade fluid is considered. It is found that the rate of entropy generation is influenced significantly by the height of the bearing clearance and the non-Newtonian parameter of the fluid.

    • Entropy generation in a pipe due to non-Newtonian fluid flow: Constant viscosity case

      M Pakdemirli B S Yilbas

      More Details Abstract Fulltext PDF

      Non-Newtonian fluid flow in a pipe system is considered and a third grade non-Newtonian fluid is employed in the analysis. The velocity and temperature distributions across the pipe are presented. Entropy generation number due to heat transfer and fluid friction is formulated. The influences of non-Newtonian parameter and Brinkman number on entropy generation number are examined. It is found that increasing the non-Newtonian parameter reduces the fluid friction in the region close to the pipe wall. This in turn results in low entropy generation with increasing non-Newtonian parameter. Increasing Brinkman number enhances the fluid friction and heat transfer rates; in which case, entropy number increases with increasing Brinkman number.

    • Non-Newtonian fluid flow in annular pipes and entropy generation: Temperature-dependent viscosity

      M Yürüsoy B S YilbaŞ M Pakdemirli

      More Details Abstract Fulltext PDF

      Non-Newtonian fluid flow in annular pipes is considered and the entropy generation due to fluid friction and heat transfer in them is formulated. A third-grade fluid is employed to account for the non-Newtonian effect, while the Reynolds model is accommodated for temperature-dependent viscosity. Closed-form solutions for velocity, temperature, and entropy fields are presented. It is found that entropy generation number increases with reducing non-Newtonian parameter, while it is the reverse for the viscosity parameter, which is more pronounced in the region close to the annular pipe inner wall.

  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.