• Hemant Kumar

      Articles written in Sadhana

    • Study of a 30 MW bubbling fluidized bed combustor based on co-firing biomass and coal

      Hemant Kumar S K Mohapatra Ravi Inder Singh

      More Details Abstract Fulltext PDF

      Today’s power generation sources are largely dependent on fossil fuels due to which the future sustainable development has become a challenge. A significant amount of the pollutant emissions such as carbon dioxide, carbon monoxide and nitrogen oxide from the power sector is related to the use of fossil fuels for power generation. As the demand for electricity is growing rapidly, emissions of carbon dioxide and other pollutants from this sector can be expected to increase unless other alternatives are made available. Among the energy sources that can substitute fossil fuels, biomass fuels appear as one of the options with a high worldwide potential. In the Punjab region of India, Fluidized-bed combustion technology is being used for converting biomass into thermal energy and power generation in various small scale units. The investigation of biomass-based plant through experimental activities and numerical simulation is the scope of this study. The investigations were done at Captive Power Plant (CPP), Ambuja Cement Limited, a project of Holcim, District Ropar, India. During experimental investigations, the study of bed temperatures and steam temperatures at different zones has been done for coal fired and biomass fired combustors with 30% share. No clear effects of co-firing on boiler performance are observed. However, the operational behavior of the boiler in terms of bed temperature and stack emissions shows a different trend. During simulation, the contours of temperature have been obtained for both the boilers and the trends are found in agreement with real process.

  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.