D KARTHIKA RENUKA
Articles written in Sadhana
Volume 47 All articles Published: 5 November 2022 Article ID 0227
Multilingual low resource Indian language speech recognition and spell correction using Indic BERT
M C SHUNMUGA PRIYA D KARTHIKA RENUKA L ASHOK KUMAR S LOVELYN ROSE
India is a land of unity; it is home to 122 major languages and 1599 other languages. Around 70% of people in India speak Indo-Aryan languages whereas 19% speak Dravidian languages which are agglutinative morphologically rich. Speech is a lucid, time-saving, and effortless means of communication. Automatic speech recognition (ASR) is a process that accurately transcribes spoken utterances into text. Speech recognition in Indian languages will empower people to easily access their regional language to any content they desire. The ultimate goal of this proposed work is to develop a novel deep sequence modeling-based ASR system with improved spell corrector for seven low-resource languages. The efficacy of our proposed model is evaluatedusing word error rate (WER) and sequence match ratio. The end-to-end ASR system based on a recurrent neural network-gated recurrent unit (RNN-GRU) achieves plausible results with average WER of 0.62. Indeed, one of the key concerns in the ASR system is spelling errors in transcribed text. Despite the intricacy involved in spell correction of Natural Language Processing, the transformer-based INDIC Bidirectional Encoder Representations from Transformers language model yields a significant improvement in performance by 10% and reduces the average WER to 0.52.
Volume 48, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.