• D Manjunath

      Articles written in Sadhana

    • Topological properties of random wireless networks

      Srikanth K Iyer D Manjunath

      More Details Abstract Fulltext PDF

      Wireless networks in which the node locations are random are best modelled as random geometric graphs (RGGs). In addition to their extensive application in the modelling of wireless networks, RGGs find many new applications and are being studied in their own right. In this paper we first provide a brief introduction to the issues of interest in random wireless networks. We then discuss some recent results for one-dimensional networks with the nodes distributed uniformly in (0,z). We then discuss some asymptotic results for networks in higher dimensions when the nodes are distributed in a finite volume. Finally we discuss some recent generalisations in considering non uniform transmission ranges and non uniform node distributions. An annotated bibliography of some of the recent literature is also provided.

    • A tutorial survey of topics in wireless networking: Part I

      Anurag Kumar D Manjunath

      More Details Abstract Fulltext PDF

      In this two part paper, we provide a survey of recent and emerging topics in wireless networking. We view the area of wireless networking as dealing with problems of resource allocation so that the various connections that utilise the network achieve their desired performance objectives. In the first part of the paper, we first survey the area by providing a taxonomy of wireless networks as they have been deployed. Then, we provide a quick tutorial on the main issues in the wireless ‘physical’ layer, which is concerned with transporting bits over the radio frequency spectrum. Then, we proceed to discuss some resource allocation formulations in CDMA (code division multiple access) cellular networks and OFDMA (orthogonal frequency division multiple access) networks.

      In the second part of the paper, we first analyse random access wireless networks and pay special attention to 802·11 (Wi-Fi) networks. We then survey some topics in ad hoc multihop wireless networks, where we discuss arbitrary networks, as well as some theory of dense random networks. Finally, we provide an overview of the technical issues in the emerging area of wireless sensor networks.

    • A tutorial survey of topics in wireless networking: Part II

      Anurag Kumar D Manjunath

      More Details Abstract Fulltext PDF

      This is the second part of the survey of recent and emerging topics in wireless networking. We provide an overview of the area of wireless networking as that of dealing with problems of resource allocation so that the various connections that utilise the network achieve their desired performance objectives.

      In Part I we provided a taxonomy of wireless networks as they have been deployed. We then provided a quick survey of the main issues in the wireless 'physical' layer. We then discussed some resource allocation formulations in CDMA (code division multiple access) cellular networks and OFDMA (orthogonal frequency division multiple access) networks.

      In this part we begin with a discussion of random access wireless networks. We first provide an overview of the evolution of random access networks from Aloha to the currently popular 802·11 (Wi-Fi) networks. We then analyse the performance of the 802·11 random access protocol. We briefly discuss the problem of optimal association of nodes to Wi-Fi access points. Next, we consider topics in ad hoc multihop wireless networks. We first discuss topology and cross layer control. For the latter, we describe the important maximum weight link scheduling algorithm. The connectivity and capacity of randomly deployed networks are then analysed. Finally, we provide an overview of the technical issues in the emerging area of wireless sensor networks.

  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.