• BIN CHEN

      Articles written in Sadhana

    • Thermodynamic and numerical analysis of intake air humidification of a turbocharged GDI engine

      BIN CHEN LI ZHANG XI CHEN QING ZHANG

      More Details Abstract Fulltext PDF

      Reducing the temperature and increasing the specific heat capacity of working medium of gasoline engines are the most efficient methods of mitigating knock tendency. The charge cooling effect of intake air humidification is helpful for decreasing the initial temperature of intake air, and the increase of the specific heat capacity of working medium can reduce the temperature rise in the in-cylinder process. This study established a mathematical model of intake air humidification of gasoline engines, and analyzed the effects of the technique on the thermodynamic process of a turbocharged gasoline engine with Ricardo WAVE Code. The results indicated that the intake air humidification is an isenthalpic process; the vapor influences the working process of the engine by altering the thermodynamic parameters of the working medium. A decrease in the initial temperature and adiabatic index and an increase in the specific heat capacity of working medium lowered the in cylinder temperature and pressure, hence suppressing the knock occurrence. After the humidification of intakeair, the engine performance slightly increased, and the thermal efficiency showed different levels of improvements at all the working conditions.

    • The thermodynamic analysis of an electrically supercharged Miller Cycle gasoline engine with early intake valve closing

      BIN CHEN LI ZHANG QUNSHUN LUO QING ZHANG

      More Details Abstract Fulltext PDF

      Electric superchargers are able to improve the thermodynamic process of gasoline engines by selfadapting running state to dominate intake air in all operation conditions. This paper proposes a novel approach for electrically supercharged Miller Cycle with early intake valve closing based on thermodynamics to settle thefuel economy problem of gasoline engines at low load operations by taking advantages of the domination of electric superchargers to intake air. Electrically supercharged Miller Cycle with early intake valve closing was realized by matching an electric supercharger, redesigning the inlet cam, and setting the intake valves closing before bottom dead center while keeping intake valves opening constant. An over-expanded engine cycle is attempted to be used to promote thermal efficiency by increasing geometric compression ratio, in addition to maintaining the effective compression ratio. Here, it has been attempted to systematically analyze the law of the energy losses of the electrically supercharged Miller Cycle gasoline engine with early intake valve closing using a reliable thermodynamic model from the perspective of heat engine. The results indicate that electricallysupercharged Miller Cycle with early intake valve closing could improve the thermal efficiency of gasoline engines by significantly decreasing the pumping and exhaust losses.

© 2017-2019 Indian Academy of Sciences, Bengaluru.