BERKAN HIZARCI
Articles written in Sadhana
Volume 45 All articles Published: January 2020 Article ID 0022 Original Article (Mechanical Sciences)
Classification of pitting fault levels in a worm gearbox using vibration visualization and ANN
RAFET CAN ÜMÜTLÜ BERKAN HIZARCI HASAN OZTURK ZEKI KIRAL
Mechanical power transmission systems are an indispensable part of the industrial process. The most complex equipment of these processes is the gear systems. Among the gear systems the worm gearboxes are used in various applications, especially those that need high transmission ratios in one reduction stage.However, worm wheel manifests defects easily because it is made of soft material, in comparison with the worm. The stress on each tooth surface may increase because of overload, shock load, cyclic load change, gear misalignment, etc. This often causes pitting faults in worm gearboxes. This paper focuses on the detection of localized pitting damages in a worm gearbox by a vibration visualization method and artificial neural networks (ANNs). For this purpose, the vibration signals are converted into an image to display and detect pitting defects on the worm wheel tooth surface. In addition, statistical parameters of vibration signals in the time andfrequency domains are used as an input to ANN for multi-class recognition. Later, the results obtained from ANN are compared for both axial and radial vibration. It is found that the ANN can classify with high accuracy for any sample of the vibration data obtained from the radial direction according to fault severity levels.
Volume 45, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.