BASABI CHAKRABORTY
Articles written in Sadhana
Volume 45 All articles Published: January 2020 Article ID 0011 Original Article (Computer Sciences)
An information-theoretic graph-based approach for feature selection
AMIT KUMAR DAS SAHIL KUMAR SAMYAK JAIN SAPTARSI GOSWAMI AMLAN CHAKRABARTI BASABI CHAKRABORTY
Feature selection is a critical research problem in data science. The need for feature selection has become more critical with the advent of high-dimensional data sets especially related to text, image and microarray data. In this paper, a graph-theoretic approach with step-by-step visualization is proposed in the context of supervised feature selection. Mutual information criterion is used to evaluate the relevance of the features with respect to the class. A graph-based representation of the input data set, named as feature information map (FIM) is created, highlighting the vertices representing the less informative features. Amongst the more informative features, the inter-feature similarity is measured to draw edges between features having high similarity. At the end, minimal vertex cover is applied on the connected vertices to identify a subset of features potentially havingless similarity among each other. Results of the experiments conducted with standard data sets show that the proposed method gives better results than the competing algorithms for most of the data sets. The proposed algorithm also has a novel contribution of rendering a visualization of features in terms of relevance andredundancy.
Volume 45, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.