Ankur Kumar
Articles written in Sadhana
Volume 40 Issue 3 May 2015 pp 673-755 Section I – Fluid Mechanics and Fluid Power (FMFP)
Ankur Kumar Jyeshtharaj B Joshi Arun K Nayak Pallippattu K Vijayan
In this paper, a review is presented on the experimental investigations and the numerical simulations performed to analyze the thermal-hydraulic performance of the air-cooled heat exchangers. The air-cooled heat exchangers mostly consist of the finned-tube bundles. The primary role of the extended surfaces (fins) is to provide more heat transfer area to enhance the rate of heat transfer on the air side. The secondary role of the fins is to generate vortices, which help in enhancing the mixing and the heat transfer coefficient. In this study, the annular and plate fins are considered, the annular fins are further divided into four categories: (1) plane annular fins, (2) serrated fins, (3) crimped spiral fins, (4) perforated fins, and similarly for the plate fins, the fin types are: (1) plain plate fins, (2) wavy plate fins, (3) plate fins with DWP, and (4) slit and strip fins. In Section 4, the performance of the various types of fins is presented with respect to the parameters: (1) Reynolds number, (2) fin pitch, (3) fin height, (4) fin thickness, (5) tube diameter, (6) tube pitch, (7) tube type, (8) number of tube rows, and (9) effect of dehumidifying conditions. In Section 5, the conclusions and the recommendations for the future work have been given.
Volume 43 Issue 8 August 2018 Article ID 0132
Experimental investigations and comparison of various MPPT techniques for photovoltaic system
ANKUR KUMAR GUPTA YOGESH K CHAUHAN TANMOY MAITY
This paper deals with Matlab/Simulink and experimental investigations of various maximum power point tracking (MPPT) techniques namely incremental conductance (Inc), perturb and observation (P&O), constant voltage control (CVC) method, and introduction of a novel reference power (Pref) method for extracting the maximum power from the solar photovoltaic (PV) system. The complete system model along with these MPPT methods are developed in Matlab/Simulink and simulation results are obtained during sudden increase in irradiation of 1000 W/m², and verified experimentally. These MPPT methods are also implemented on Inverse-Sepic converter, which claims to extract maximum power from the PV system. Various experimental observations are taken to access the performance of these MPPT techniques such as settling time of the full load current under sudden exposure of irradiation level of 1000 W/m², performance during step increase in irradiation level (from 500 W/m² to 1000 W/m²) and vice versa. Extensive results are taken to compare these methods. The proposed Pref method is found to have lowest settling time to stabilize the load current as 520 ms, whereas, Inc method takes 1.24 s. Further, the efficiency of Inverse-Sepic converter with Pref method achieves the highest efficiency of 95.26%, whereas, it extracts lowest efficiency on same input as 90.77% with P&O method. The overall performance of the proposed Pref method is found to be superior as compared to other discussed MPPT methods as verified by experimental results.
Volume 47, 2022
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.