Articles written in Sadhana

    • Hot machining of Ti–6Al–4V: FE analysis and experimental validation


      More Details Abstract Fulltext PDF

      Machining process is a nonlinear process where high stress, temperature and strain are generated in the primary and secondary shear zone. It is difficult to determine these parameters experimentally and also consumes time. In this study, finite-element method (FEM) is applied to hot machining of Ti–6Al–4V alloyusing DEFORM software. The simulations are used to investigate the effect of heating temperature on cutting force, cutting temperature, stress, strain and chip morphology for various machining conditions. The predicted results are compared to results obtained in room temperature and hot machining conditions. From this analysis, it is observed that hot machining reduces the cutting force, and changes the chip morphology. To validate the simulation results, an experimental trial is performed and positive coherence is achieved.

    • Machinability study of Ti-6Al-4V alloy using solid lubricant


      More Details Abstract Fulltext PDF

      Cutting tool suffers rapidly during machining titanium-based alloys due to low thermal conductivity. Thus most of the heat is concentrated on the tool rather than chip during machining. To overcome this problem, a suitable cutting parameter, tool geometry, and sustainable methods are necessary. This paper presents the effect of MoS2 solid lubricant (SL), cutting speed, and nose radius during turning of Ti-6Al-4V alloy using the TiAlN coated carbide tool. The experiments are performed at different cutting speeds, nose radius, and flowrates of solid lubricant to study tool wear, surface roughness, and chip morphology. The results show that the use of solid lubricant reduces the tool wear (37%), and the surface roughness (65%) compared to the dry cutting.Similarly, the effects of nose radius and cutting speed have also been studied for both conditions

  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.