Articles written in Sadhana

    • Auxiliary subsystems of a General-Purpose IGBT Stack for high-performance laboratory power converters


      More Details Abstract Fulltext PDF

      A PWM converter is the prime component in many power electronic applications such as static UPS, electric motor drives, power quality conditioners and renewable-energy-based power generation systems. While there are a number of computer simulation tools available today for studying power electronic systems,the value added by the experience of building a power converter and controlling it to function as desired is unparalleled. A student, in the process, not only understands power electronic concepts better, but also gains insights into other essential engineering aspects of auxiliary subsystems such as start-up, sensing, protection, circuit layout design, mechanical arrangement and system integration. Higher levels of protection features are critical for the converters used in a laboratory environment, as advanced protection schemes could prevent unanticipated failures occurring during the course of research. This paper presents a laboratory-built General-Purpose IGBT Stack (GPIS), which facilitates students to practically realize different power converter topologies. Essential subsystems for a complete power converter system is presented covering details of semiconductor device driving, sensing circuit, protection mechanism, system start-up, relaying and critical PCB layout design, followed by a brief comparison to commercially available IGBT stacks. The results show the high performance that can be obtained by the GPIS converter.

    • Design and comparative study of discrete and module-based IGBT power converters


      More Details Abstract Fulltext PDF

      This paper discusses concepts of a 20 kVA power converter design and key differences between discrete IGBT and module-based design approaches. Module-based power converters have been typically employed in academic and research institutes for power levels of 10 kVA and more. However, with advancement in IGBT technologies and the growing need to minimize system size and weight, designs based on discrete devices are now an attractive alternative for such power levels. A simple procedure is presented for power converter design that includes power loss evaluation, heat-sink thermal characterization, thermal model of overall system and sizing of DC link capacitor. Using the same, a state-of-the-art discrete device and modulebased power converters are designed. A comparison is subsequently made, where it is shown that discrete approach yields a compact and economic design up to a power level of 20 kVA. A key objective of this work is to lay emphasis on laboratory design of power converters. This enables a graduate level student to build a converter from start and in the process gain insights into the underlying engineering design aspects.

  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.