• Upendra Kumar

      Articles written in Pramana – Journal of Physics

    • Degradation process in organic thin film devices fabricated using P3HT

      Rashmi Ashok K Kapoor Upendra Kumar V R Balakrishnan P K Basu

      More Details Abstract Fulltext PDF

      The stability of regioregular poly(3-hexylthiophene 2,5-diyl) (P3HT) thin films sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes have been investigated under normal environmental conditions ($25^{\circ}$C and RH$\sim 45-50$%). Electrical and optical properties of ITO/P3HT/Al devices have been studied over a period of 30 days. Mobility 𝜇 of the order of $10^{-4}$ cm2/V-s has been obtained from the $V^{2}$ law in the as- deposited P3HT ¯lms. Scanning electron microscopy (SEM) investigations show blistering of Al contacts in devices with a poly(3,4-ethylenedioxythiophene) (PEDOT) interlayer on application of voltage whereas no blistering is seen in devices without PEDOT. The results have been explained in terms of trap generation and propagation and the moisture-absorbing nature of PEDOT.

    • A theoretical study of pump–probe experiment in single-layer, bilayer and multilayer graphene

      Enamullah Vipin Kumar Upendra Kumar Girish S Setlur

      More Details Abstract Fulltext PDF

      The pump–probe experiment is typically used to study relaxation phenomena in nonlinear optical systems. Here we use it as a tool to study the phenomenon of anomalous Rabi oscillations in graphene that was predicted recently in single-layer graphene. Unlike conventional Rabi oscillations, anomalous Rabi oscillations are unique to graphene (and possibly to surface states of topological insulators (TIs)), attributable to the pseudospin (conventional spin for TI) degree of freedom and Dirac-fermion character of the graphene system. A pump pulse of a finite duration long enough to contain a large number of cycles induces a current density that oscillates with the frequency of the pump pulse. The amplitude associated with these fast oscillations is seen to exhibit much slower oscillations with a frequency given by $2\omega^2_R/\omega$–the anomalous Rabi frequency, where $\omega_R$ is the conventional Rabi frequency and 𝜔 is the frequency of the external pump field. This effect is easily probed by a probe pulse subsequent to the pump, where it manifests itself as periodic oscillations of the probe susceptibility as a function of pump duration at each probe frequency. Alternatively, it is also seen as an oscillatory function of the pump–probe delay with other variables remaining fixed. This period corresponds to the anomalous Rabi frequency. An analysis of the previously reported experimental data confirms the presence of anomalous Rabi oscillations in graphene.

    • Coherent nonlinear electromagnetic response in twisted bilayer and few-layer graphene

      Vipin Kumar Enamullah Upendra Kumar Girish S Setlur

      More Details Abstract Fulltext PDF

      The phenomenon of Rabi oscillations far from resonance is described in bilayer and few-layer graphene. These oscillations in the population and polarization at the Dirac point in 𝑛-layer graphene are seen in the nth harmonic termin the external driving frequency. The underlying reason behind these oscillations is attributable to the pseudospin degree of freedom possessed by all these systems. Conventional Rabi oscillations, which occur only near resonance, are seen in multiple harmonics in multilayer graphene. However, the experimentally measurable current density exhibits anomalous behaviour only in the first harmonic in all the graphene systems. A fully numerical solution of the optical Bloch equations is in complete agreement with the analytical results, thereby justifying the approximation schemes used in the latter. The same phenomena are also described in twisted bilayer graphene with and without an electric potential difference between the layers. It is found that the anomalous Rabi frequency is strongly dependent on twist angle for weak applied fields – a feature absent in single-layer graphene, whereas the conventional Rabi frequency is relatively independent of the twist angle.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.