• T R Krishna Mohan

      Articles written in Pramana – Journal of Physics

    • The quasi-equilibrium phase of nonlinear chains

      T R Krishna Mohan Surajit Sen

      More Details Abstract Fulltext PDF

      We show that time evolution initiated via kinetic energy perturbations in conservative, discrete, spring-mass chains with purely nonlinear, non-integrable, algebraic potentials of the formV(xi− xi+1) ∼ (xi− xi+1)2n,n ≥ 2 and an integer, occurs via discrete solitary waves (DSWs) and discrete antisolitary waves (DASWs). Presence of reflecting and periodic boundaries in the system leads to collisions between the DSWs and DASWs. Such collisions lead to the breakage and subsequent reformation of (different) DSWs and DASWs. Our calculations show that the system eventually reaches a stable ‘quasi-equilibrium’ phase that appears to be independent of initial conditions, possesses Gaussian velocity distribution, and has a higher mean kinetic energy and larger range of kinetic energy fluctuations as compared to the pure harmonic system withn = 1; the latter indicates possible violation of equipartition.

    • Linearity stabilizes discrete breathers

      T R Krishna Mohan Surajit Sen

      More Details Abstract Fulltext PDF

      The study of the dynamics of 1D chains with both harmonic and nonlinear interactions, as in the Fermi–Pasta–Ulam (FPU) and related problems, has played a central role in efforts to identify the broad consequences of nonlinearity in these systems. Here we study the dynamics of highly localized excitations, or discrete breathers, which are known to be initiated by the quasistatic stretching of bonds between adjacent particles. We show via dynamical simulations that acoustic waves introduced by the harmonic term stabilize the discrete breather by suppressing the breather’s tendency to delocalize and disperse. We conclude that the harmonic term, and hence acoustic waves, are essential for the existence of localized breathers in these systems.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.