• T K Rana

      Articles written in Pramana – Journal of Physics

    • Decay of Hoyle state

      S Bhattacharya T K Rana C Bhattacharya S Kundu K Banerjee T K Ghosh G Mukherjee R Pandey P Roy

      More Details Abstract Fulltext PDF

      The prediction of Hoyle state was necessitated to explain the abundance of carbon, which is crucial for the existence of life on Earth and is the stepping stone for understanding the abundance of other heavier elements. After the experimental confirmation of its existence, soon it was realized that the Hoyle state was `different’ from other excited states of carbon, which led to intense theoretical and experimental activities over the past few decades to understand its structure. In recent times, precision, high statistics experiments on the decay of Hoyle state have been performed at the Variable Energy Cyclotron Centre, to determine the quantitative contributions of various direct $3\alpha$ decay mechanisms of the Hoyle state. The present results have been critically compared with those obtained in other recent experiments and their implications have been discussed.

    • Fusion–fission dynamics studies using mass distribution as a probe

      T K Ghosh A Chaudhuri K Banerjee S Bhattacharya C Bhattacharya S Kundu G Mukherjee R Pandey T K Rana P Roy T Roy V Srivastava P Bhattacharya

      More Details Abstract Fulltext PDF

      Study of quasifission reaction mechanism and shell effects in compound nuclei has important implications on the synthesis of superheavy elements (SHE). Using the major accelerator facilities available in India, quasifission reaction mechanism and shell effects in compound nuclei were studied extensively. Fission fragment mass distribution was used as a probe. Two factors, viz., nuclear orientation and direction of mass flow of the initial dinuclear system after capture were seen to determine the extent of quasifission. From the measurement of fragment mass distribution in 𝛼-induced reaction on actinide targets, it was possible to constrain the excitation energy at which nuclear shell effect washed out.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.