Sushanta Dattagupta
Articles written in Pramana – Journal of Physics
Volume 35 Issue 6 December 1990 pp 579-591
Relaxation behaviour of a biased two-level system, in metals in the weak damping limit
Tabish Qureshi Sushanta Dattagupta
The dynamic properties of a biased two-level system in contact with a dissipative bath are studied in the weak coupling limit using a resolvent expansion method. The theory yields consistent results at low temperatures, a regime in which the widely used dilute bounce gas approximation (DBGA) to an underlying functional integral expression breaks down. The present results are however equivalent to a recently adapted functional integral technique that goes beyond the DBGA. The calculated expressions are relevant for analyzing the neutron scattering data on tunneling of light interstitials, e.g., hydrogen, in metals, at very low temperatures.
Volume 47 Issue 3 September 1996 pp 199-210
Stochastic motion of a charged particle in a magnetic field: I Classical treatment
Jagmeet Singh Sushanta Dattagupta
We study the dissipative, classical dynamics of a charged particle in the presence of a magnetic field. Two stochastic models are employed, and a comparative analysis is made, one based on diffusion processes and the other on jump processes. In the literature on collision-broadening of spectral lines, these processes go under the epithet of weak-collision model and Boltzmann-Lorentz model, respectively. We apply our model calculation to investigate the effect of magnetic field on the collision-broadened spectral lines, when the emitter carries an electrical charge. The spectral lines show narrowing as the magnetic field is increased, the narrowing being sharper in the Boltzmann-Lorentz model than in the weak collision model.
Volume 47 Issue 3 September 1996 pp 211-224
Stochastic motion of a charged particle in a magnetic field: II Quantum Brownian treatment
Sushanta Dattagupta Jagmeet Singh
We study the quantum Brownian motion of a charged particle in the presence of a magnetic field. From the explicit solution of a quantum Langevin equation we calculate quantities such as the velocity correlation function and the mean-squared displacement. Our calculated expressions contain as special cases the motion of a
Volume 59 Issue 2 August 2002 pp 203-219
Coherence vs. decoherence in (some) problems of condensed matter physics
We present an ‘overview’ of coherence-to-decoherence transition in certain selected problems of condensed matter physics. Our treatment is based on a subsystem-plus-environment approach. All the examples chosen in this paper have one thing in common — the environmental degrees of freedom are taken to be bosonic and their spectral density of excitations is assumed to be ‘ohmic’. The examples are drawn from a variety of phenomena in condensed matter physics involving, for instance, quantum diffusion of hydrogen in metals, Landau diamagnetism and
Volume 61 Issue 3 September 2003 pp 601-609
Quantum treatment of the Anderson-Hasegawa model in the presence of superexchange
P A Sreeram Manidipa Mitra Sushanta DattaGupta
We revisit the Anderson-Hasegawa double-exchange model and critically examine its exact solution when the core spins are treated quantum mechanically. We show that the quantum effects, in the presence of an additional superexchange interaction between the core spins, yield a term, the significance of which has been hitherto ignored. The importance of this term is further assessed by numerically exact computation for a four-spin system.
Volume 64 Issue 5 May 2005 pp 634a-634b
Sushanta Dattagupta H R Krishnamurthy Rahul Pandit T V Ramakrishnan Diptiman Sen
Volume 64 Issue 6 June 2005 pp 828-828a
Sushanta Dattagupta H R Krishnamurthy Rahul Pandit T V Ramakrishnan Diptiman Sen
We investigate the solvability of a variety of well-known problems in lattice statistical mechanics. We provide a new numerical procedure which enables one to conjecture whether the solution falls into a class of functions called
Volume 70 Issue 3 March 2008 pp 381-398 Review
Quantum mechanics of rapidly and periodically driven systems
Malay Bandyopadhyay Sushanta Dattagupta
This review deals with the dynamics of quantum systems that are subject to high frequency external perturbations. Though the problem may look hopelessly time-dependent, and poised on the extreme opposite side of adiabaticity, there exists a `Kapitza Window' over which the dynamics can be treated in terms of effective time-independent Hamiltonians. The consequent results are important in the context of atomic traps as well as quantum optic properties of atoms in intense and high-frequency electromagnetic fields.
Volume 79 Issue 3 September 2012 pp 357-376
Dephasing of a qubit due to quantum and classical noise
Ebad Kamil Sushanta Dattagupta
The qubit (or a system of two quantum dots) has become a standard paradigm for studying quantum information processes. Our focus is decoherence due to interaction of the qubit with its environment, leading to noise. We consider quantum noise generated by a dissipative quantum bath. A detailed comparative study with the results for a classical noise source such as generated by a telegraph process, enebles us to set limits on the pplicability of this process $\nu is à \nu is$ its quantum counterpart, as well as lend handle on the parameters that can be tuned for analysing decoherence. Both Ohmic and non-Ohmic dissipations are treated and appropriate limits are analysed for facilitating comparison with the telegraph process.
Volume 94, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2017-2019 Indian Academy of Sciences, Bengaluru.