• Surinder M Sharma

      Articles written in Pramana – Journal of Physics

    • High pressure phase transitions in organic solids I:α → β transition in resorcinol

      Surinder M Sharma V Vijayakumar S K Sikka R Chidambaram

      More Details Abstract Fulltext PDF

      An experimental program has been started to study polymorphic phase transitions under pressure in organic solids using the Be gasketing technique developed by us. This allows us to obtain x-ray diffraction patterns of low symmetry organic solids with high resolution, employing CuKα radiation. The first organic solid studied is α-resorcinol. At 0.5 GPa, it transforms to its high temperature and denser modification, β-resorcinol. The transformation mechanism is discussed with the help of molecular packing calculations.

    • High pressure phase transitions in organic solids II: X-ray diffraction study ofp-dichlorobenzene at high pressures

      Hema Sankaran Surinder M Sharma S K Sikka R Chidambaram

      More Details Abstract Fulltext PDF

      X-ray diffraction experiments onp-dichlorobenzene at high pressures show a transition at ∼ 0.3 GPa, to a new phase, the diffraction pattern of which cannot be indexed on the anticipated low temperature monoclinic crystal structure. We have instead found an orthorhombic cell, very closely related to the low temperature monoclinic cell, for this new phase. This structure, which also occurs inp-diiodobenzene at ambient conditions, has cell constantsa =14.02,b = 6.06,c = 7.41Å andZ = 4. The space group is Pbca. This new phase has a non-β herring-bone structure, in contrast with the initialα phase which has aβ-structure with ribbon-like arrangement of molecules, with Cl-Cl contacts of ∼ 4A between adjacent molecules. This implies that with pressure the halogen-halogen interaction in this compound plays a less dominant role in crystal engineering.

    • Pressure induced amorphization of AlPO4

      Hema Sankaran Surinder M Sharma S K Sikka R Chidambaram

      More Details Abstract Fulltext PDF

      AlPO4 has been compressed to pressures of 16 GPa in a diamond anvil cell and its X-ray diffraction pattern studied by the energy-dispersive technique. The compound is observed to become amorphous at ∼ 12 GPa. This explains the loss of Raman spectrum of AlPO4 reported by Jayaraman and coworkers (1987).

    • Search for a precursor crystal-to-crystal phase transition to amorphization in α-GeO2 and α-AlPO4 under pressure

      M S Somayazulu Nandini Garg Surinder M Sharma S K Sikka

      More Details Abstract Fulltext PDF

      Recent X-ray diffraction studies on α-quartz (SiO2) by Kingmaet al [1], have shown the occurrence of a reversible, crystalline-to-crystalline, phase transition just prior to amorphization at ≈ 21 GPa. This precursor transition has also been confirmed by our recent molecular dynamics simulation study [2]. In order to investigate the possibility of a similar behaviour in other isostructural compounds, which also undergo pressure induced amorphization, α-GeO2 and α-AlPO4 (berlinite form) were studied using energy dispersive X-ray diffraction. In either of these materials, no such phase transition is detected prior to amorphization. The onset of amorphization and its reversal is found to be time dependent in GeO2.

    • High pressure study of phase transitions inα-FePO4

      Chitra Murli Surinder M Sharma S K Kulshreshtha S K Sikka

      More Details Abstract Fulltext PDF

      High pressure behaviour of FePO4 in berlinite form has been investigated up to 10 GPa using vibrational Raman spectroscopy and energy dispersive x-ray diffraction. Combination of these techniques along with studies on pressure quenched samples reveal structural transitions in this material from its room pressure trigonal phase to a disordered and a crystalline phase near 3±0.5 GPa. The latter is the Cmcm phase which is the equilibrium structure at high pressures. These high pressure phases do not revert back to its initial structure after release of pressure. Irreversibility of these transformations indicates that FeO4 tetrahedra do not regain their initial coordination. These high pressure transitions can be rationalized in terms of the three level free energy diagram for such systems.

    • Spectroscopic study ofβ-Ni(OH)2 under pressure

      Chitra Murli V Sugandhi Nandini Garg Surinder M Sharma S K Sikka

      More Details Abstract Fulltext PDF

      Infrared absorption and Raman study ofβ-Ni(OH)2 has been carried out up to 25 GPa and 33 GPa, respectively. The frequency ofA2u internal antisymmetric stretching O-H mode decreases linearly with pressure at a rate of −0.7 cm1/GPa. The FWHM of this mode increases continuously with pressure and reaches a value of ∼ 120 cm−1 around 25 GPa. There was no discernible change observed in the frequency and width of the symmetric stretchingA1g O-H Raman mode up to 33 GPa. The constancy of the Raman mode is taken as a signature of the repulsion produced by H-H contacts in this material under pressure. Lack of any discontinuity in these modes suggests that there is no phase transition in this material in the measured pressure range.

    • Some recent investigations of materials under high pressures

      Surinder M Sharma

      More Details Abstract Fulltext PDF

      By subjecting materials to high pressures one can significantly reduce interatomic and intermolecular distances. This causes drastic changes in the nature of electronic and vibrational states and also in bonding, bringing about several unusual structural, electronic and magnetic phase transitions. In addition, these studies provide a very useful data about the equation of state of the materials of interest. Several examples from our work are presented which elucidate the richness of physics under these conditions.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.