• Santokh Singh

      Articles written in Pramana – Journal of Physics

    • Relativistic remnants in the reduction of the Bethe-Salpeter equation to the Schrödinger equation

      G P Malik Santokh Singh Vijaya S Varma

      More Details Abstract Fulltext PDF

      Following Salpeter, the Bethe-Salpeter equation for the bound system of two oppositely charged particles is reduced to a Schrödinger equation for each of the following cases: (a) both particles are spin 1/2 particles, (b) one particle is a spinor while the other is spinless, and (c) both particles are spinless. It is shown that ife is the magnitude of charge carried by each of the particles whose masses are set equal to the electron and proton masses then, strictly speaking, only in case (a) do we obtain the familiar Schrödinger equation for the hydrogen atom. The latter equation is recovered in the other two cases only if relativistic remnants—terms of the order of 10−5 and smaller—are neglected in comparison with unity. Attention is drawn to a situation where such remnants may not be negligibly small, viz. the problem of confinement of quarks.

    • Mass spectrum of elementary particles in a temperature-dependent model

      G P Malik Santokh Singh Vijaya S Varma

      More Details Abstract Fulltext PDF

      We show that the temperature-generalization of a popular model of quark-confinement seems to provide a rather interesting insight into the origin of mass of elementary particles: as the universe cooled, there was an era when particles did not have an identity since their masses were variable; the temperature at which the conversion of these ‘nomadic’ particles into ‘elementary’ particles took place seems to have been governed by the value of a dimension-less coupling constantCc. ForCc=0.001(0.1) this temperature is of the order of 109 K (1011 K), below which the particle masses do not change.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.