• S Y Wang

      Articles written in Pramana – Journal of Physics

    • Pressure-induced amorphization of Gd2(MoO4)3: A high pressure Raman investigation

      A Jayaraman S K Sharma S Y Wang

      More Details Abstract Fulltext PDF

      High pressure Raman spectroscopic studies on Gd2(MoO4)3(GMO) have been carried out at ambient temperature in the diamond cell to 10 GPa hydrostatic pressure. These experiments have revealed pressure-induced phase transitions in GMO near 2 GPa and 6.0 GPa. The first transition is from Pba2(β′) phase to another undetermined crystalline phase, designated as phase II, and the second transition is to an amorphized state. On releasing pressure there is a partial reversion to the crystalline state. The Raman data indicate that the amorphization is due to disordering of the MoO4 tetrahedral units. Further, it is inferred from the nature of the Raman bands in the amorphized material that the Mo-O bond lengths and bond angles have a range of values, instead of a few set values. The results of the present study as well as previous high pressure-high temperature quenching experiments strongly support that pressure-induced amorphization in GMO is a consequence of the kinetically impededβ toα phase transition. The system in frustration becomes disordered. The rare earth trimolybdates crystallizing in theβ′ structure are all expected to undergo similar pressure-induced amorphization.

    • Pressure-induced structural and electronic transition in KTb(MoO4)2 through Raman and optical studies

      A Jayaraman S K Sharma S Y Wang S R Shieh L C Ming S-W Cheong

      More Details Abstract Fulltext PDF

      Raman and optical absorption studies under pressure have been conducted on KTb(MoO4)2 up to 35.5 GPa. A phase transformation occurs at 2.7 GPa when the crystal is pressurized at ambient temperature in a hydrostatic pressure medium. The sample changes to a deep yellow color at the transition and visibly contracts in theα-axis direction. The color shifts to red on further pressure increase. The Raman spectral features and the X-ray powder pattern change abruptly at the transition indicating a structural change. The pressure-induced transition appears to be a property of the layer-type alkali rare earth dimolybdates. However, the color change at the transition in KTb(MoO4)2 is rather unusual and is attributed to a valence change in Tb initiated by the structural transition and consequent intervalence charge transfer between Tb and Mo.In situ high pressure X-ray diffraction data suggest that phase II could be orthorhombic with a unit cell having 3 to 4% smaller volume than that of phase I.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.