• S P RAM

      Articles written in Pramana – Journal of Physics

    • Dependence of $\it{in-situ}$ Bose condensate size on final frequency of RF-field in evaporative cooling

      S R MISHRA S P RAM S K TIWARI H S RAWAT

      More Details Abstract Fulltext PDF

      We report the results of $\it{in-situ}$ characterization of $^{87}$Rb atom cloud in a quadrupole Ioffe configuration (QUIC) magnetic trap after a radio-frequency (RF) evaporative cooling of the trapped atom cloud. The $\it{in-situ}$ absorption images of the atom cloud have shown clear bimodal optical density (OD) profiles which indicate the Bose–Einstein condensation (BEC) phase transition in the trapped gas. Also, we report here, for the first time, the measured variation in the sizes of the condensate and thermal clouds with the final frequency selected in the frequency scan of the RF-field for evaporative cooling. These results on frequency-dependent sizes of the clouds are consistent with the theoretical understanding of the BEC phenomenon in the trap.

    • A single laser-operated magneto-optical trap for Rb atomic fountain

      S SINGH B JAIN S P RAM V B TIWARI S R MISHRA

      More Details Abstract Fulltext PDF

      A single diode laser and an electro-optic modulator (EOM)-operated magneto-optical trap (MOT) has been developed for a compact atomic fountain. For generating the required cooling and re-pumping laser beams for the MOT, an EOM operating at 6.58 GHz has been used to modulate the input laser beam. In the trapped cold atom cloud, the population in the two ground hyperfine states ($F = 1$ and $F = 2$) of $^{87}$Rb atom has been varied by changing the power applied to EOM. Using this MOT, the cold atoms have been launched vertically upwards and the launch velocity of atoms has been measured. Besides being compact, such MOTs can be useful in atom interferometry set-ups where different atom clouds with different initial hyperfine states need to be prepared.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.