S Dzhumanov
Articles written in Pramana – Journal of Physics
Volume 45 Issue 5 November 1995 pp 385-418
A consistent and unified microscopic theory of superfluidity and superconductivity is developed on the basis of two-stage Fermi-Bose-liquid (FBL) (in particular case, one-stage Bose-liquid) scenarios. It is shown that these phase transition scenarios is accompanied, as a rule, by the formation of composite bosons (Cooper pair and bipolarons) with their subsequent single particle (SPC) and pair condensation (PC). A brief outline of the modified and generalized BCS-like pairing theory of fermions is presented. In an analogy to that, a detailed boson pairing theory is developed. The SPC and PC features of an attracting 3d- and 2d-BG as a function of the interboson coupling constant in the complete range 0≤
Volume 94 All articles Published: 1 January 2020 Article ID 0008 Research Article
S DZHUMANOV B L OKSENGENDLER SH S DJUMANOV
So far, many researchers have been misled to believe that the Bardeen–Cooper–Schrieffer (BCS)-like ($s-$ or $d-$wave) pairing theory is adequate for explaining high-$T_{c}$ superconductivity in doped cuprates from underdoped to overdoped regime.We show that the doped cuprates, depending on the Fermi energy ($\varepsilon_{F}$) and the energy ($\varepsilon_{A}$) of the effective attraction between pairing carriers, might be either unconventional (non-BCS-type) superconductors (at intermediate doping) or BCS-type superconductors (at higher doping). We argue that specific criteria for BCS-type superconductivity formulated in terms of two ratios $\varepsilon_{A}/\varepsilon_{F}$ and $\Delta/\varepsilon_{F}$ (where $\Delta$ is the BCS-like gap) must be met in these systems. We demonstrate that these criteria are satisfied only in overdoped cuprates but not in underdoped and optimally doped cuprates, where the origin of high-$T_{c}$ superconductivity is quite different from the BCS-type ($s-$ or $d-$wave) superconductivity. The BCS-like pairing theory is then used to calculate the critical superconducting transition temperature ($T_{c}$) and the peculiar oxygen and copper isotope effects on $T_{c}$ in overdoped cuprates.
Volume 96, 2022
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.