• SUMAIRA QAYYUM

      Articles written in Pramana – Journal of Physics

    • Entropy generation optimisation in the nanofluid flow of a second grade fluid with nonlinear thermal radiation

      TASAWAR HAYAT MEHREEN KANWAL SUMAIRA QAYYUM M IJAZ KHAN AHMED ALSAEDI

      More Details Abstract Fulltext PDF

      The flow of a second grade fluid by a rotating stretched disk is considered. Brownian motion and thermophoresis characterise the nanofluid. Entropy generation in the presence of heat generation/absorption, Joule heating and nonlinear thermal radiation is discussed. Homotopic convergent solutions are developed. The behaviour of velocities (radial, axial, tangential), temperature, entropy generation, Bejan number, Nusselt number, skin friction and concentration is evaluated. The radial, axial and tangential velocities increase for larger viscoelastic parameters while the opposite trend is noted for temperature. Concentration decreases when Schmidt number and Brownian diffusion increase. Entropy generation increases when the Bejan number increase while the opposite is true for the Brinkman number and the magnetic parameter.

    • Transportation of activation energy in the Oldroyd-B nanofluid by considering double stratification over a surface with variable thickness

      M IJAZ KHAN SUMAIRA QAYYUM SHAHID FAROOQ T HAYAT A ALSAEDI

      More Details Abstract Fulltext PDF

      In this communication, the impact of activation energy on the nonlinear binary chemically reactive flow of an Oldroyd-B nanofluid has been examined. Buongiorno’s nanofluid model is used in mathematical modelling. The flow behaviour is discussed over a nonlinear stretchable surface with variable thickness. Nonlinear mixed convection is considered. The energy equation is modelled subject to a heat source/sink and radiative flux. Furthermore, double stratification at the boundary of the sheet is considered for the heat and mass transfers. Important slip mechanisms such as Brownian and thermophoresis diffusions are accounted. The obtained flow expressions are analytically solved by using the optimal homotopy asymptotic method (OHAM). Computational analysis for concentration, temperature and velocity is obtained and discussed using plots. Nusselt and Sherwood numbers are discussed using a tabulated form. Total squared residual error is calculated for velocity, temperature andconcentration. The obtained results show that for increased values of Hartmann (magnetic parameter) and Deborah numbers, the fluid velocity decreases. The temperature field shows an increasing impact in the presence of larger radiative parameters. Sherwood and Nusselt numbers increase with higher values of thermophoresis and solutal stratified parameters.

    • Entropy generation minimisation: Nonlinear mixed convective flow of Sisko nanofluid

      TASAWAR HAYAT FARIA MASOOD SUMAIRA QAYYUM AHMED ALSAEDI

      More Details Abstract Fulltext PDF

      Two-dimensional magneto-Sisko nanofluid flow bounded by nonlinearly stretching sheet is studied. Thermophoretic diffusion and Brownian motion effects are also scrutinised. Additionally, impacts of activation energy, chemical reaction and nonlinear convection are considered. The purpose of this study is to analyse entropy generation in the Sisko fluid model. Suitable transformations are used to reduce the governing equation of motion, concentration and temperature. Effects of some pertinent variables on skin friction coefficient, temperature, velocity, concentration and Nusselt number are graphically presented. Clearly, for larger Brownian and thermophoresis parameters, the temperature increases while concentration distribution decreases with Brownian parameter. Bejan number is maximum away from the sheet in the case of shear thickening fluids while it approaches zero for shear thinning fluids.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.