• SETU RANI

      Articles written in Pramana – Journal of Physics

    • Lie symmetry reductions and dynamics of soliton solutions of (2+1)-dimensional Pavlov equation

      SACHIN KUMAR SETU RANI

      More Details Abstract Fulltext PDF

      In the present article, Lie group of point transformations method is successfully applied to study the invariance properties of the (2 + 1)-dimensional Pavlov equation. Applying the Lie symmetry method, we strictly obtain the infinitesimals, vector fields, commutation relation and several interesting symmetry reductions of the equation. The explicit exact solutions are derived under some limiting conditions imposed on the infinitesimals $\xi$, $\phi$, $\tau$ and $\eta$. Then, the Pavlov equation is transformed into a number of nonlinear ODEs through several symmetry reductions. These new exact solutions are more general and entirely different from the work of Kumar $et al$ (Pramana - J. Phys. 94: 28 (2020)). The obtained invariant solutions are examined analytically as well as physically through numerical simulation by giving free alternative values of arbitrary functions and constants. Consequently, graphical representations of all these solutions are studied and demonstrated in 3D-graphics and the corresponding contour plots. Interestingly, the solution profiles show the annihilation of three-dimensional parabolic profile, doubly soliton and elastic multisolitons and nonlinear wave nature form.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.