• SACHIN KUMAR

      Articles written in Pramana – Journal of Physics

    • Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and $(G'/G)$-expansion method

      Sachin Kumar K Singh R K Gupta

      More Details Abstract Fulltext PDF

      In this paper, coupled Higgs field equation are studied using the Lie classical method. Symmetry reductions and exact solutions are reported for Higgs equation and Hamiltonian amplitude equation. We also establish the travelling wave solutions involving parameters of the coupled Higgs equation and Hamiltonian amplitude equation using $(G'/G)$-expansion methodc, where $G = G(\xi)$ satisfies a second-order linear ordinary differential equation (ODE). The travelling wave solutions expressed by hyperbolic, trigonometric and the rational functions are obtained.

    • Symmetry analysis of some nonlinear generalised systems of space–time fractional partial differential equations with time-dependent variable coefficients

      SACHIN KUMAR BALJINDER KOUR

      More Details Abstract Fulltext PDF

      In this paper, the Lie group analysis method is applied to carry out the Lie point symmetries of some space–time fractional systems including coupled Burgers equations, Ito’s system, coupled Korteweg–de-Vries(KdV) equations, Hirota–Satsuma coupled KdV equations and coupled nonlinear Hirota equations with time-dependent variable coefficients with the Riemann–Liouville derivative. Symmetry reductions are constructed using Lie symmetries of the systems. To the best of our knowledge, nobody has so far derived the invariants of space–time nonlinear fractional partial differential equations with time-dependent coefficients.

    • Computational soliton solutions to (2 + 1)-dimensional Pavlov equation using Lie symmetry approach

      SACHIN KUMAR MUKESH KUMAR DHARMENDRA KUMAR

      More Details Abstract Fulltext PDF

      In this work, Lie symmetry analysis and one-dimensional optimal system for Pavlov equation are presented. All the possible vector fields, their commutative and adjoint relations are carried out under invariance property of Lie group theory. On the basis of optimal system, similarity reductions of Pavlov equation are obtained. A repeated process of similarity reductions transforms the Pavlov equation into ordinary differential equations, which generate invariant solutions. The obtained invariant solutions are supplemented by numerical simulation toanalyse the physical behaviour. Thus, their parabolic, multisoliton, nonlinear, kink and antikink wave profiles are traced in results and discussions sections.

    • Lie symmetry reductions and dynamics of soliton solutions of (2+1)-dimensional Pavlov equation

      SACHIN KUMAR SETU RANI

      More Details Abstract Fulltext PDF

      In the present article, Lie group of point transformations method is successfully applied to study the invariance properties of the (2 + 1)-dimensional Pavlov equation. Applying the Lie symmetry method, we strictly obtain the infinitesimals, vector fields, commutation relation and several interesting symmetry reductions of the equation. The explicit exact solutions are derived under some limiting conditions imposed on the infinitesimals $\xi$, $\phi$, $\tau$ and $\eta$. Then, the Pavlov equation is transformed into a number of nonlinear ODEs through several symmetry reductions. These new exact solutions are more general and entirely different from the work of Kumar $et al$ (Pramana - J. Phys. 94: 28 (2020)). The obtained invariant solutions are examined analytically as well as physically through numerical simulation by giving free alternative values of arbitrary functions and constants. Consequently, graphical representations of all these solutions are studied and demonstrated in 3D-graphics and the corresponding contour plots. Interestingly, the solution profiles show the annihilation of three-dimensional parabolic profile, doubly soliton and elastic multisolitons and nonlinear wave nature form.

    • Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the (2 + 1)-dimensional KP-BBM equation

      SACHIN KUMAR DHARMENDRA KUMAR HARSHA KHARBANDA

      More Details Abstract Fulltext PDF

      In the present article, our main aim is to construct abundant exact solutions for the (2+1)-dimensional Kadomtsev–Petviashvili-Benjamin–Bona–Mahony (KP-BBM) equation by using two powerful techniques, the Lie symmetry method and the generalised exponential rational function (GERF) method with the help of symbolic computations via Mathematica. Firstly, we have derived infinitesimals, geometric vector fields, commutation relations and optimal system. Therefore, the KP-BBM equation is reduced into several nonlinear ODEs under two stages of symmetry reductions. Furthermore, abundant solutions are obtained in different shapes of single solitons, solitary wave solutions, quasiperiodic wave solitons, elastic multisolitons, dark solitons and bright solitons, which are more relevant, meaningful and useful to describe physical phenomena due to the existence of free parameters and constants. All these generated exact soliton solutions are new and completely different from the previous findings. Moreover, the dynamical behaviour of the obtained exact closed-form solutions is analysed graphically by their 3D, 2D-wave profiles and the corresponding density plots by using the mathematical software, which will be comprehensively used to explain complex physical phenomena in the fields of nonlinear physics, plasma physics, optical physics, mathematical physics, nonlinear dynamics, etc.

    • Lie symmetry analysis, group-invariant solutions and dynamics of solitons to the (2+1)-dimensional Bogoyavlenskii–Schieff equation

      SACHIN KUMAR SETU RANI

      More Details Abstract Fulltext PDF

      In the present work, abundant group-invariant solutions of (2 + 1)-dimensional Bogoyavlenskii–Schieff equation have been investigated using Lie symmetry analysis. The Lie infinitesimal generators, all the geometric vector fields, their commutative and adjoint relations are provided by utilising the Lie symmetry method. The Lie symmetry method depends on the invariance criteria of Lie groups, which results in the reduction of independent variables by one. A repeated process of Lie symmetry reductions, using the double, triple and septuple combinations between the considered vectors, converts the Bogoyavlenskii–Schieff (BS) equation into nonlinear ordinary differential equations (ODEs) which furnish numerous explicit exact solutions with the help of computerised symbolic computation. The obtained group-invariant solutions are entirely new and distinct from the earlier established findings. As far as possible, a comparison of our reported results with the previous findings is given. The dynamical behaviour of solutions is discussed both analytically as well as graphically via their evolutionary wave profiles by considering suitable choices of arbitrary constants and functions. To ensure rich physical structures, the exact closed-form solutions are supplemented via numerical simulation, which produce some bright solitons, doubly solitons, parabolic waves, U-shaped solitons and asymptotic nature.

    • An update on coherent scattering from complex non-PT-symmetric Scarf II potential with new analytic forms

      SACHIN KUMAR ZAFAR AHMED

      More Details Abstract Fulltext PDF

      The versatile and exactly solvable Scarf II potential has been predicting, confirming and demonstrating interesting phenomena in complex PT-symmetric sector, most impressively. However, for the non-PT-symmetric sector, it has gone underutilised. Here, we present the most simple analytic forms for the scattering coefficients $(T (k), R(k), | det S(k)|)$. On the one hand, these forms demonstrate earlier effects and confirm the recent ones. On the other hand, they make new predictions – all simple and analytical. We show the possibilities of both self-dual and non-self-dual spectral singularities (NSDSS) in two non-PT sectors (potentials). The former one is not accompanied by time-reversed coherent perfect absorption (CPA) and gives rise to the parametrically controlled splitting of spectral singularity (SS) into a finite number of complex conjugate pairs of eigenvalues (CCPEs). NSDSS behave just oppositely: CPA but no splitting of SS. We demonstrate a one-sided reflectionlessness without invisibility. Most importantly, we bring out a surprising coexistence of both real discrete spectrum and a single SS in a fixed potential. Nevertheless, so far, the complex Scarf II potential is not known to be pseudo-Hermitian ($η ^{−1}Hη = H^{†})$ under a metric of the type $η(x)$.

    • On new symmetries and exact solutions of Einstein’s field equation for perfect fluid distribution

      R K GUPTA RADHIKA JAIN SACHIN KUMAR DIVYA JYOTI

      More Details Abstract Fulltext PDF

      Some new infinite-dimensional generalised Lie symmetries of Einstein’s field equations for perfect fluid distribution are found by using the Lie symmetry analysis. The reduced ordinary differential equations are solved to obtain new non-trivial exact solutions. The software MAPLE is used for computation and MAPLE code is given to facilitate the research in this field.

    • Generalised exponential rational function method for obtaining numerous exact soliton solutions to a (3 + 1)-dimensional Jimbo–Miwa equation

      SACHIN KUMAR DHARMENDRA KUMAR

      More Details Abstract Fulltext PDF

      In this work, we apply the generalised exponential rational function (GERF) method on an extended (3+1)-dimensional Jimbo–Miwa (JM) equation which describes the modelling of water waves of long wavelength with weakly nonlinear restoring forces and frequency dispersion. This JM equation is also used to construct modelling waves in ferromagnetic media and two-dimensional matter-wave pulses in Bose–Einstein condensates. The main purpose is to construct analytical wave solutions for the (3+1)-dimensional JM equation by utilising theGERF method with the help of symbolic computations.We have also presented three-dimensional plots to observe the dynamics of obtained results. To understand physical phenomenon through different shapes of solitary waves,we discussed solitons, the interaction of multiwave solitons, lump-type solitons and kink-type solutions.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.