S Kailas
Articles written in Pramana – Journal of Physics
Volume 57 Issue 2-3 August 2001 pp 233-234
Volume 64 Issue 1 January 2005 pp 47-53
Adiabatic heavy-ion fusion potentials for fusion at deep sub-barrier energies
S V S Sastry S Kailas A K Mohanty A Saxena
The recently reported unusual behaviour of fusion cross-sections at extreme sub-barrier energies has been examined. The adiabatic limit of fusion barriers has been determined from experimental data using the barrier penetration model. These adiabatic barriers are consistent with the adiabatic fusion barriers derived from the modified Wilzynska-Wilzynski prescription. The fusion barrier systematics has been obtained for a wide range of heavy-ion systems.
Volume 68 Issue 2 February 2007 pp 307-313
Manish Sharma V Kumar H Kumawat J Adam V S Barashenkov S Ganesan S Golovatiouk S K Gupta S Kailas M I Krivopustov H S Palsania V Pronskikh V M Tsoupko-Sitnikov N Vladimirova H Westmeier W Westmeier
A beam of 1 GeV proton coming from Dubna Nuclotron colliding with a lead target surrounded by 6 cm paraffin produces spallation neutrons. A Th-foil was kept on lead target (neutron spallation source) in a direct stream of neutrons for activation and other samples of 197Au, 209Bi, 59Co, 115In and 181Ta were irradiated by moderated beam of neutrons passing through 6 cm paraffin moderator. The gamma spectra of irradiated samples were analyzed using gamma spectrometry and DEIMOS software to measure the neutron cross-section. For this purpose neutron fluence at the positions of samples is also estimated using PREPRO software. The results of cross-sections for reactions 232Th($n, \gamma$), 232Th($n, 2n$), 197Au($n, \gamma$), 197Au($n, \alpha$), 197Au($n, xn$), 59Co($n, \alpha$), 59Co($n, xn$), 181Ta($n, \gamma$) and 181Ta($n, xn$) are given in this paper. Neutronics validation of the Dubna Cascade Code is also done using cross-section data by other experiments.
Volume 68 Issue 2 February 2007 pp 331-342
Accelerator development in India for ADS programme
P Singh S V L S Rao Rajni Pande T Basak Shwetha Roy M Aslam P Jain S C L Srivastava Rajesh Kumar P K Nema S Kailas V C Sahni
At BARC, development of a Low Energy High Intensity Proton Accelerator (LEHIPA), as front-end injector of the 1 GeV accelerator for the ADS programme, has been initiated. The major components of LEHIPA (20 MeV, 30 mA) are a 50 keV ECR ion source, a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV drift tube linac (DTL). The Low Energy Beam Transport (LEBT) and Medium Energy Beam Transport (MEBT) lines match the beam from the ion source to RFQ and from RFQ to DTL respectively. Design of these systems has been completed and fabrication of their prototypes has started. Physics studies of the 20{1000 MeV part of the Linac are also in progress. In this paper, the present status of this project is presented.
Volume 71 Issue 6 December 2008 pp 1271-1277 Research Articles
Electric dipolarizability of 7Li
Sudhir R Jain Arun K Jain S Kailas
We calculate the electric dipolarizability of 7Li nucleus within the cluster model and estimate a value of about 0.0188 fm3. We also discuss the possibility of observing this in the scattering of 7Li from a 208Pb target at energies about 30 MeV.
Volume 72 Issue 2 February 2009 pp 363-373 Research Articles
Reaction mechanism study of 7Li(7Li, 6He) reaction at above Coulomb barrier energies
V V Parkar V Jha S Santra B J Roy K Ramachandran A Shrivastava K Mahata A Chatterjee S Kailas
The elastic scattering and the 6He angular distributions were measured in 7Li + 7Li reaction at two energies, $E_{lab} = 20$ and 25 MeV. FRDWBA calculations have been performed to explain the measured 6He data. The calculations were very sensitive to the choice of the optical model potentials in entrance and exit channels. The one-step proton transfer was found to be the dominant reaction mechanism in 6He production.
Volume 78 Issue 2 February 2012 pp 247-255 Research Articles
Physics design of a CW high-power proton Linac for accelerator-driven system
Rajni Pande Shweta Roy S V L S Rao P Singh S Kailas
Accelerator-driven systems (ADS) have evoked lot of interest the world over because of their capability to incinerate the MA (minor actinides) and LLFP (long-lived fission products) radiotoxic waste and their ability to utilize thorium as an alternative nuclear fuel. One of the main subsystems of ADS is a high energy (∼1 GeV) and high current (∼30 mA) CW proton Linac. The accelerator for ADS should have high efficiency and reliability and very low beam losses to allow hands-on maintenance. With these criteria, the beam dynamics simulations for a 1 GeV, 30 mA proton Linac has been done. The Linac consists of normal-conducting radio-frequency quadrupole (RFQ), drift tube linac (DTL) and coupled cavity drift tube Linac (CCDTL) structures that accelerate the beam to about 100 MeV followed by superconducting (SC) elliptical cavities, which accelerate the beam from 100 MeV to 1 GeV. The details of the design are presented in this paper.
Volume 82 Issue 4 April 2014 pp 619-624
Keynote address: One hundred years of nuclear physics – Progress and prospects
Nuclear physics research is growing on several fronts, along energy and intensity frontiers, with exotic projectiles and targets. The nuclear physics facilities under construction and those being planned for the future make the prospects for research in this field very bright.
Volume 83 Issue 6 December 2014 pp 851-884 Invited Review
Charged particle-induced nuclear fission reactions – Progress and prospects
The nuclear fission phenomenon continues to be an enigma, even after nearly 75 years of its discovery. Considerable progress has been made towards understanding the fission process. Both light projectiles and heavy ions have been employed to investigate nuclear fission. An extensive database of the properties of fissionable nuclei has been generated. The theoretical developments to describe the fission phenomenon have kept pace with the progress in the corresponding experimental measurements. As the fission process initiated by the neutrons has been well documented, the present article will be restricted to charged particle-induced fission reactions. The progress made in recent years and the prospects in the area of nuclear fission research will be the focus of this review.
Volume 85 Issue 2 August 2015 pp 335-343
Fission time-scale from the measurement of pre-scission light particles and 𝛾-ray multiplicities
K Ramachandran A Chatterjee A Navin K Mahata A Shrivastava V Tripathi S Kailas V Nanal R G Pillay A Saxena R G Thomas D R Chakrabarty V M Datar Suresh Kumar P K Sahu
An overview of the experimental result on simultaneous measurement of pre-scission neutron, proton, 𝛼-particle and GDR 𝛾-ray multiplicities for the reaction 28Si+175Lu at 159 MeV using the BARC–TIFR Pelletron–LINAC accelerator facility is given. The data were analysed using deformation-dependent particle transmission coefficients, binding energies and level densities which are incorporated in the code JOANNE2 to extract fission time-scales and mean deformation of the saddle-to-scission emitter. The neutron, light charged particle and GDR 𝛾-ray multiplicity data could be explained consistently. The emission of neutrons seems to be favoured towards larger deformation as compared to charged particles. The pre-saddle time-scale is deduced as (0–2) × 10−21 s whereas the saddle-to-scission time-scale is (36–39) × 10−21 s. The total fission time-scale is deduced as (36–41) × 10−21 s.
Volume 85 Issue 3 September 2015 pp 517-523
Nuclear transmutation strategies for management of long-lived fission products
Management of long-lived nuclear waste produced in a reactor is essential for long-term sustenance of nuclear energy programme. A number of strategies are being explored for the effective transmutation of long-lived nuclear waste in general, and long-lived fission products (LLFP), in particular. Some of the options available for the transmutation of LLFP are discussed.
Volume 85 Issue 3 September 2015 pp 555-560
Summary: 75 years of nuclear fission – present status and perspectives
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.