S K Tripathi
Articles written in Pramana – Journal of Physics
Volume 63 Issue 3 September 2004 pp 617-625
Electrical properties of a-GexSe100-
Abdolali Zolanvari Navdeep Goyal S K Tripathi
In general, the conductivity in chalcogenide glasses at higher temperatures is dominated by band conduction (DC conduction). But, at lower temperatures, hopping conduction dominates over band conduction. A study at lower temperature can, eventually, provide useful information about the conduction mechanism and the defect states in the material. Therefore, the study of electrical properties of GexSe100-
Volume 76 Issue 4 April 2011 pp 629-637
Meyer–Neldel DC conduction in chalcogenide glasses
S PraKash Kulbir Kaur Navdeep Goyal S K Tripathi
Meyer–Neldel (MN) formula for DC conductivity ($\sigma_{\text{DC}}$) of chalcogenide glasses is obtained using extended pair model and random free energy barriers. The integral equations for DC hopping conductivity and external conductance are solved by iterative procedure. It is found that MN energy ($\Delta E_{\text{MN}}$) originates from temperature-induced configurational and electronic disorders. Single polaron-correlated barrier hopping model is used to calculate $\sigma_{\text{DC}}$ and the experimental data of Se, As2S3, As2Se3 and As2Te3 are explained. The variation of attempt frequency $\upsilon_0$ and $\Delta E_{\text{MN}}$ with parameter $(r/a)$, where 𝑟 is the intersite separation and 𝑎 is the radius of localized states, is also studied. It is found that $\upsilon_0$ and $\Delta E_{\text{MN}}$ decrease with increase of $(r/a)$, and $\Delta E_{\text{MN}}$ may not be present for low density of defects.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.