• Ramesh Tikekar

      Articles written in Pramana – Journal of Physics

    • Non-adiabatic gravitational collapse of charged radiating fluid spheres

      Ramesh Tikekar L K Patel

      More Details Abstract Fulltext PDF

      Dynamical equations governing the non-adiabatic collapse of a shear-free spherical distribution of unisotropic matter in the presence of charge are obtained. A brief outline of constructing a model describing collapse of a charged radiating fluid sphere in the set up developed is given.

    • Some exact solutions in Bianchi VI0 string cosmology

      Ramesh Tikekar L K Patel

      More Details Abstract Fulltext PDF

      Following the techniques used by Letelier and Stachel some new physically relevant explicit Bianchi VI0 solutions of string cosmology with magnetic field are reported. They include two models describing distributions of Takabayashi strings and geometric strings respectively.

    • Inhomogeneous cosmological models with heat flux

      L K Patel Ramesh Tikekar Naresh Dadhich

      More Details Abstract Fulltext PDF

      We present a general class of inhomogeneous cosmological models filled with non-thermalized perfect fluid by assuming that the background spacetime admits two space-like commuting Killing vectors and has separable metric coefficients. The singularity structure of these models depends on the choice of the parameters and the metric functions. A number of previously known perfect fluid models follow as particular cases of this general class. Physical and geometrical features of these models are studied and the general expression for temperature distribution is given.

    • Relativistic fluid sphere on pseudo-spheroidal space-time

      Ramesh Tikekar V O Thomas

      More Details Abstract Fulltext PDF

      A new exact closed form solution of Einstein's field equations is reported describing the space-time in the interior of a fluid sphere in equilibrium. The physical 3-space,t=constant of its space-time has the geometry of a 3-pseudo spheroid. The suitability of this solution for describing the model of a relativistic superdense star is discussed and the stability of the model under radial pulsations is examined.

    • Anisotropic fluid distributions on pseudo-spheroidal spacetimes

      Ramesh Tikekar V O Thomas

      More Details Abstract Fulltext PDF

      An exact solution of Einstein’s field equations for anisotropic fluid distribution on the background of a pseudo-spheroidal spacetime has been reported. The models based on this solution are found to accommodate density variation of high degree from the centre to the boundary of the distribution and admit a subclass for which both the radial and tangential pressures vanish at the boundary of the configuration.

    • Rotating cylindrically symmetric Kaluza-Klein fluid model

      Ramesh Tikekar L K Patel

      More Details Abstract Fulltext PDF

      Kaluza-Klein field equations for stationary cylindrically symmetric fluid models in standard Einstein theory are formulated and a set of physically viable solutions is reported. This set is believed to be the first such Kaluza-Klein solutions and it includes the Kaluza-Klein counterpart of Davidson’s solution describing spacetime of a perfect fluid in rigid rotation about a regular axis.

    • On spherically symmetric singularity-free models in relativistic cosmology

      Ramesh Tikekar

      More Details Abstract Fulltext PDF

      The introduction of time dependence through a scale factor in a non-conformally flat static cosmological model whose spacetime can be embedded in a five demensional flat spacetime is shown to give rise to two spherical models of universe filled with perfect fluid acompannied with radial heat flux without any Big Bang type singularity. The first model describes an ever existing universe which witnesses a transition from state of contraction to that of ever expansion. The second model represents a universe oscillating between two regular states.

    • A relativistic core-envelope model on pseudospheroidal space-time

      Ramesh Tikekar V O Thomas

      More Details Abstract Fulltext PDF

      A core-envelope model for superdense matter distribution with the feature- core consisting of anisotropic fluid distribution and envelope with isotropic fluid distribution is reported on the background of pseudospheroidal space-time. The physical plausibility of the model is examined analytically and numerically.

    • On relativistic models of strange stars

      Ramesh Tikekar Kanti Jotania

      More Details Abstract Fulltext PDF

      The superdense stars with mass-to-size ratio exceeding 0.3 are expected to be made of strange matter. Assuming that the 3-space of the interior space-time of a strange star is that of a three-paraboloid immersed in a four-dimensional Euclidean space, we obtain a two-parameter family of their physically viable relativistic models. This ansatz determines density distribution of the interior self-gravitating matter up to one unknown parameter. The Einstein's field equations determine the fluid pressure and the remaining geometrical variables. The information about mass-to-size ratio together with the conventional boundary conditions lead to the determination of total mass, radius and other parameters of the stellar configuration.

    • Relativistic models of a class of compact objects

      Rumi Deb Bikash Chandra Paul Ramesh Tikekar

      More Details Abstract Fulltext PDF

      A class of general relativistic solutions in isotropic spherical polar coordinates which describe compact stars in hydrostatic equilibrium are discussed. The stellar models obtained here are characterized by four parameters, namely, 𝜆, 𝑘, 𝐴 and 𝑅 of geometrical significance related to the inhomogeneity of the matter content of the star. The stellar models obtained using the solutions are physically viable for a wide range of values of the parameters. The physical features of the compact objects taken up here are studied numerically for a number of admissible values of the parameters. Observational stellar mass data are used to construct suitable models of the compact stars.

    • Non-adiabatic radiative collapse of a relativistic star under different initial conditions

      Ranjan Sharma Ramesh Tikekar

      More Details Abstract Fulltext PDF

      We examine the role of space-time geometry in the non-adiabatic collapse of a star dissipating energy in the form of radial heat flow, studying its evolution under different initial conditions. The collapse of a star filled with a homogeneous perfect fluid is compared with that of a star filled with inhomogeneous imperfect fluid under anisotropic pressure. Both the configurations are spherically symmetric. However, in the latter case, the physical space 𝑡 = constant of the configurations endowed with spheroidal or pseudospheroidal geometry is assumed to be inhomogeneous. It is observed that as long as the collapse is shear-free, its evolution depends only on the mass and size of the star at the onset of collapse.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.