• R Ramanna

      Articles written in Pramana – Journal of Physics

    • Fusion-fission angular distributions: A new probe of fast fission fractionation in nucleus-nucleus collisions

      S S Kapoor V S Ramamurthy R Ramanna

      More Details Abstract Fulltext PDF

      Fragment angular distributions in heavy ion-induced fission reactions have been analysed in terms of a two component model—fission following compound nucleus formation and fast fission events. It is seen that, contrary to the general assumption, fast fission competes with compound nucleus fission even when the composite system is formed with a spin less than the rotating liquid drop model limit for vanishing fission barrier.

    • The thorium cycle for fast breeder reactors

      R Ramanna S M Lee

      More Details Abstract Fulltext PDF

      The role that could be played by liquid metal-cooled fast breeder reactors (LMFBRs) in the utilization of India’s considerable thorium resources is reviewed in this article. Distinct advantages of thorium-based fuels over plutonium-uranium fuels in LMFBRs pertain to a more favourable coolant voiding reactivity coefficient and better fuel element irradiation stability. The poorer breeding capability of thorium-fuelled fast reactors can in principle be overcome by improved core design and development of advanced fuel concepts. The technical feasibility of such advanced thorium fuels and core designs must be established by sustained research and development. It is also necessary to efficiently close the thorium fuel cycle of fast breeder reactors by appropriate development of the fuel reprocessing and refabrication stages. The Fast Breeder Test Reactor (FBTR) at Kalpakkam is expected to be an important tool for development of thorium fuel and fuel cycle technology. A quick look at the economics of the thorium cycle for fast reactors, vis-a-vis the more conventional uranium cycle indicates only a small and acceptable cost disadvantage on account of the need for remote fabrication of recycled thorium fuel.

    • Nucleon exchange mechanism of mass asymmetry relaxation in fission and other binary nuclear reactions

      V S Ramamurthy R Ramanna

      More Details Abstract Fulltext PDF

      Mass asymmetry relaxation as manifested in fission and heavy ion-induced binary reactions is reviewed. In fission, the dynamics is characteristic of a fully damped case and is well described by a stochastic theory. In heavy ion deep inelastic collisions and quasi-fission, on the other hand, the relaxation is incomplete giving rise to the possibility of studying its time evolution.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.