R Singh
Articles written in Pramana – Journal of Physics
Volume 63 Issue 6 December 2004 pp 1359-1365
Working group report: Low energy and flavour physics
Amol Dighe Anirban Kundu K Agashe B Anantanarayan A Chandra A Datta P K Das S P Das A Dighe R Forty D K Ghosh Y -Y Keum A Kundu N Mahajan S Majhi G Mazumdar K Mazumdar P Mehta Y Nir J P Saha R Singh N Sinha R Sinha A Soni S Uma Sankar R Vaidya
This is a report of the low energy and flavour physics working group at WHEPP-8, held at the Indian Institute of Technology, Mumbai, India, during 5–16 January 2004.
Volume 73 Issue 6 December 2009 pp 1073-1086
Low-frequency fluctuations in a pure toroidal magnetized plasma
A magnetized, low-𝛽 plasma in pure toroidal configuration is formed and extensively studied with ion mass as control parameter. Xenon, krypton and argon plasmas are formed at a fixed toroidal magnetic field of 0.024 T, with a peak density of $\sim 10^{11}$ cm-3, $\sim 4 \times 10^{10}$ cm-3 and $\sim 2 \times 10^{10}$ cm−3 respectively. The experimental investigation of time-averaged plasma parameter reveals that their profiles remain insensitive to ion mass and suggests that saturated slab equilibrium is obtained. Low-frequency (LF) coherent fluctuations ($\omega$ < $\omega_{\text{ci}}$) are observed and identified as flute modes. Here $\omega_{\text{ci}}$ represents ion cyclotron frequency. Our results indicate that these modes get reduced with ion mass. The frequency of the fluctuating mode decreases with increase in the ion mass. Further, an attempt has been made to discuss the theory of flute modes to understand the relevance of some of our experimental observations.
Volume 75 Issue 2 August 2010 pp 317-331 Accelerators and Instrumentation for Nuclear Physics
Hybrid recoil mass analyzer at IUAC – First results using gas-filled mode and future plans
N Madhavan S Nath T Varughese J Gehlot A Jhingan P Sugathan A K Sinha R Singh K M Varier M C Radhakrishna E Prasad S Kalkal G Mohanto J J Das Rakesh Kumar R P Singh S Muralithar R K Bhowmik A Roy Rajesh Kumar S K Suman A Mandal T S Datta J Chacko A Choudhury U G Naik A J Malyadri M Archunan J Zacharias S Rao Mukesh Kumar P Barua E T Subramanian K Rani B P Ajith Kumar K S Golda
Hybrid recoil mass analyzer (HYRA) is a unique, dual-mode spectrometer designed to carry out nuclear reaction and structure studies in heavy and medium-mass nuclei using gas-filled and vacuum modes, respectively and has the potential to address newer domains in nuclear physics accessible using high energy, heavy-ion beams from superconducting LINAC accelerator (being commissioned) and ECR-based high current injector system (planned) at IUAC. The first stage of HYRA is operational and initial experiments have been carried out using gas-filled mode for the detection of heavy evaporation residues and heavy quasielastic recoils in the direction of primary beam. Excellent primary beam rejection and transmission efficiency (comparable with other gas-filled separators) have been achieved using a smaller focal plane detection system. There are plans to couple HYRA to other detector arrays such as Indian national gamma array (INGA) and $4\pi$ spin spectrometer for ER tagged spectroscopic/spin distribution studies and for focal plane decay measurements.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2023-2024 Indian Academy of Sciences, Bengaluru.