Pankaj S Joshi
Articles written in Pramana – Journal of Physics
Volume 69 Issue 1 July 2007 pp 119-135
On the genericity of spacetime singularities
We consider here the genericity aspects of spacetime singularities that occur in cosmology and in gravitational collapse. The singularity theorems (that predict the occurrence of singularities in general relativity) allow the singularities of gravitational collapse to be either visible to external observers or covered by an event horizon of gravity. It is shown that the visible singularities that develop as final states of spherical collapse are generic. Some consequences of this fact are discussed.
Volume 84 Issue 4 April 2015 pp 491-501
Finite escape fraction for ultrahigh energy collisions around Kerr naked singularity
We investigate the issue of observability of high-energy collisions around Kerr naked singularity and show that results are in contrast with the Kerr black hole case. We had shown that it would be possible to have ultrahigh energy collisions between the particles close to the location 𝑟 = M around the Kerr naked singularity if the Kerr spin parameter transcends unity by an infinitesimally small amount 𝑎 $\to$ 1^{+}. The collision is between initially ingoing particle that turns back as an outgoing particle due to angular momentum barrier, with another ingoing particle. We assume that two massless particles are produced in such a collision and their angular distribution is isotropic in the centre-of-mass frame. We calculated the escape fraction for the massless particles to reach infinity. We showed that the escape fraction is finite and approximately equal to half for the ultrahigh energy collisions. Therefore, the particles produced in high-energy collisions would escape to infinity providing the signature of the nature of basic interactions at those energies. This result is in contrast with the case of extremal Kerr black hole where almost all particles produced in high-energy collisions are absorbed by the black hole rendering collisions unobservable.
Volume 94, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2017-2019 Indian Academy of Sciences, Bengaluru.