• P R Vijayaraghavan

      Articles written in Pramana – Journal of Physics

    • Inelastic neutron scattering from and lattice dynamics of α-KNO3

      K R Rao S L Chaplot P K Iyengar A H Venkatesh P R Vijayaraghavan

      More Details Abstract Fulltext PDF

      Coherent inelastic neutron scattering techniques are employed to measure several branches of the phoon dispersion relation in KNO3 in its orthorhombic (α-phase or phase II) form at room temperature. Group theoretical selection rules for external modes of the crystal have been used in the measurements along the three symmetry directions Σ(ξ00), Δ(0ξ0) and Λ(00ξ).

      Theoretical investigation of the lattice dynamics of the crystal is carried out on the basis of a rigid molecular-ion model using the external mode formalism. A two-body potential consisting of the Coulombic interaction and the Born-Mayer type short range interaction is assumed. The effective charges and radii of different atoms are determined by applying the stability criterion for the crystal. Dispersion curves are calculated, representation by representation, making use of group theoretical information. Comparison of theoretical results with experimental information on elastic constants, optical data and neutron results are made. Agreement between theoretical and the various experimental results may be considered very satisfactory.

    • Neutron, x-ray and lattice dynamical studies of paraelectric Sb2S3

      K R Rao S L Chaplot V M Padmanabhan P R Vijayaraghavan

      More Details Abstract Fulltext PDF

      Neutron and x-ray diffraction studies of Sb2S3 indicate extensive diffuse scattering in the plane perpendicular to the chain axis of polymer-like (Sb4S6)n molecules. The crystal structure of the paraelectric phase is said to be orthorhombic with space group D2h16 with four molecules per unit cell. The observed diffuse scattering may be due to static disorder or some dynamical effects. In this paper the authors have examined the possible dynamical origin by recourse to lattice dynamical studies. Dispersion relation of phonons along the three symmetry directionsa*,b* andc* is evaluated based on a lattice dynamical model incorporating Coulomb, covalent and a Born-Mayer-like short range interactions. Group theoretical analysis based on the group of neutral elements of crystal sites (GNES) was essential in order to examine and aid in the numerical computations. The group theoretical technique involving GNES extended to ‘pseudo-molecular’ systems is also discussed in this context.

      The phonon dispersion relation shows that there are rather flat TA-TO branches of very low frequency in thea andc directions which may give rise to diffuse scattering. The branches along theb-axis are quite dissimilar to those alonga andc axes because of anisotropy. Variation of the potential parameters leads to instability of the lowest TA-TO branch. This is suggestive of a temperatures or pressure-dependent phase transition. However since these modes are optically ‘silent’ one needs to carry out either high resolution neutron scattering or ultrasonic studies to confirm various aspects of the theoretical studies.

    • Phonon density of states of tetracyanoethylene from coherent inelastic neutron scattering at Dhruva reactor

      S L Chaplot R Mukhopadhyay P R Vijayaraghavan A S Deshpande K R Rao

      More Details Abstract Fulltext PDF

      Inelastic neutron scattering experiments to determine phonon density of states of coherent scattering samples of polycrystalline complex solids are generally intensity-limited and therefore are feasible only at high flux facilities. Phonon density of states of the monoclinic phase of tetracyanoethylene at 300 K, obtained using the medium resolution triple axis spectrometer at the new Indian medium flux reactor Dhruva are reported here. The raw data is converted to the “neutron weighted” phonon density of states by applying suitable corrections. Comparison made with results from a theoretical calculation based on a semirigid molecule model of lattice dynamics is fair. Results from Dhruva are also consistent with that obtained (to be published) at the high flux pulsed neutron source (ISIS) of the Rutherford Appleton Laboratory in United Kingdom.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.