P K Ahluwalia
Articles written in Pramana – Journal of Physics
Volume 44 Issue 5 May 1995 pp 453-459
Composite Anderson-Newns model and chemisorption characteristics of nickel-hydrogen system
Ravinder Guleria P K Ahluwalia K C Sharma
The composite Anderson-Newns model and triangular weighted density of states are used to study the electron density of states, magnetic moment and charge transfer of adatoms for a chemisorbed system. The model has been applied to hydrogen chemisorbed on nickel. It has been observed that with the increase in coverage, number of B-AB states as well as bond strength increases, whereas the magnetic moment and adatom charge decrease with coverage. These results match with the experimental data.
Volume 46 Issue 2 February 1996 pp 99-107
R Guleria P K Ahluwalia K C Sharma
In this paper a variation in density of states (DOS) of the substrate due to chemisorption of hydrogen on transition metals using composite Anderson-Newns model has been investigated for different coverages in quasi-chemical approximation of Fowler and Guggenhiem, which in the limit
Volume 67 Issue 6 December 2006 pp 1141-1154 Research Articles
We have carried out Monte Carlo simulations in Gibbs ensemble for two-and three-dimensional double Yukawa fluid. We have compared liquid-vapour equilibrium curve with that of Lennard-Jones, when parameters occurring in double Yukawa potential are chosen to fit Lennard-Jones potential. The results are in good agreement. The role of repulsive and attractive contributions for the potential on the liquid-vapour coexistence region as well as on critical temperature and critical density has been studied. The critical temperature is found to be more sensitive than the critical density to the variation in repulsive and attractive parts of the potential. Also, the range of the attractive interaction directly influences range of the liquid vapour coexistence region. It has been found that smaller the values of the attractive parameter, larger is the coexistence region.
Volume 94 All articles Published: 5 April 2020 Article ID 0060 Research Article
SUSHILA DEVI P K AHLUWALIA SHYAM CHAND
A systematic generalised approach to find transport observables for a linear array of different quantum dot (QD) systems has been discussed, using non-equilibrium Green function (NEGF) formalism, in the presence of on-dot Coulomb interaction and inter-dot tunnelling. The equation of motion (EOM) method has been used to derive expressions for Green functions (GFs) within the simplest mean-field approximation to tackle the Coulomb correlation term. Starting from the mathematical structures of GFs for single, double and triple quantum dot systems, the expressions for GFs and transport observables have been generalised for the quantum dot systems containing N number of quantum dots in series as well as parallel linear array of dots. Further, the formulae so obtained have been used for numerical calculations of transmission probability and the I –V characteristics of linear arrays of quantum dots in series as well as parallel configuration containing up to three dots. The results show that, with the increase in number of dots in the scattering region, transmission probability and electron current decrease in series case, while both quantities increase in parallel configuration of dots. The inter-dot tunnelling leads to the splitting of transmission peaks in double QD system in series case whereas, it induces Fano effect in triple QD system in parallel configuration.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.