• P D Semalty

      Articles written in Pramana – Journal of Physics

    • Lattice specific heat and local density of states of Ni-based dilute alloys at low temperature

      P D Semalty Kapil Dev P N Ram

      More Details Abstract Fulltext PDF

      A detailed theoretical study of the low-temperature lattice specific heat of Ni-based dilute alloys has been carried out. Lattice Green’s function method has been used to calculate the local density of states of substitutional impurities and lattice specific heat in different alloys. The resonance condition has been investigated for possible occurrence of resonance modes. Except in NiCr and NiMn, low-frequency resonance modes have been obtained in all the alloys. However, no localized mode was obtained. The impurity-induced increase in lattice specific heat is explained on the basis of the obtained resonance modes. The calculation shows an excellent agreement with the measured lattice specific heat in these alloys

    • Vibrational properties of vacancy in bcc transition metals using embedded atom method potentials

      Vandana Gairola P D Semalty P N Ram

      More Details Abstract Fulltext PDF

      The embedded atom method (EAM) potentials, with the universal form of the embedding function along with the Morse form of pair potential, have been employed to determine the potential parameters for three bcc transition metals: Fe, Mo, and W, by fitting to Cauchy pressure $(C_{12} − C_{44})/2$, shear constants $G_{v} = (C_{11} − C_{12} + 3C_{44})/5$ and $C_{44}$, cohesive energy and the vacancy formation energy. The obtained potential parameters are used to calculate the phonon dispersion spectra of these metals. Large discrepancies are found between the calculated results of phonon dispersion using the EAM and the experimental phonon dispersion results. Therefore, to overcome this inadequacy of the EAM model, we employ the modified embedded atom method (MEAM) in which a modified term along with the pair potential and embedding function is added in the total energy. The phonon dispersions calculated using potential parameters obtained from the MEAM show good agreement with experimental results compared to those obtained from the EAM. Using the calculated phonons, we evaluate the local density of states of the neighbours of vacancy using the Green’s function method. The local frequency spectrum of first neighbours of vacancy in Mo shows an increase at higher frequencies and a shift towards the lower frequencies whereas in Fe and W, the frequency spectrum shows a small decrease towards higher frequency and small shift towards lower frequency. For the second neighbours of vacancy in all the three metals, the local frequency spectrum is not much different from that of the host atom. The local density of states of the neighbours of the vacancy has been used to calculate the mean square displacements and the formation entropy of vacancy. The calculated mean square displacements of the first neighbours of vacancy are found to be higher than that of the host atom, whereas it is lower for the second neighbours. The calculated results of the formation entropy of the vacancy compared well with other available results.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.