• P A Hassan

      Articles written in Pramana – Journal of Physics

    • Sphere-to-rod transition of triblock copolymer micelles at room temperature

      R Ganguly V K Aswal P A Hassan I K Gopalakrishnan J V Yakhmi

      More Details Abstract Fulltext PDF

      A room temperature sphere-to-rod transition of the polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymer, (PEO)20(PPO)70 (PEO)20 micelles have been observed in aqueous medium under the influence of ethanol and sodium chloride. Addition of 5–10% ethanol induces a high temperature sphere-to-rod transition of the micelles, which is brought to room temperature upon addition of NaCl. The inference about the change in the shape of the micelles has been drawn from small-angle neutron scattering (SANS) and viscosity studies.

    • Effect of substitution on aniline in inducing growth of anionic micelles

      Gunjan Garg V K Aswal S K Kulshreshtha P A Hassan

      More Details Abstract Fulltext PDF

      Small-angle neutron scattering (SANS) measurements were carried out on sodium dodecyl sulfate (SDS) micelles in the presence of three different hydrophobic salts, i.e. aniline hydrochloride,o-toluidine hydrochloride andm-toluidine hydrochloride. All these salts induce a uniaxial growth of micelles to form prolate ellipsoidal structures. A progressive decrease in the surface charge of the micelles was observed with the addition of salts followed by a rapid growth of the micelles. The presence of a methyl substitution at the ortho position of aniline does not alter the growth behavior significantly. However, when the substitution is at meta position micellar growth is favored at lower salt concentration than that is observed for aniline. This can be explained in terms of the difference in the chemical environments of the substituents at the ortho and meta positions.

    • Small angle neutron scattering study of doxorubicin–surfactant complexes encapsulated in block copolymer micelles

      Jayita Bhattacharjee Gunjan Verma V K Aswal P A Hassan

      More Details Abstract Fulltext PDF

      Self-assembling behaviour of block copolymers and their ability to evade the immune system through polyethylene oxide stealth makes it an attractive candidate for drug encapsulation. Micelles formed by polyethylene oxide–polypropylene oxide–polyethylene oxide triblock copolymers (PEO–PPO–PEO), pluronic P123, have been employed for encapsulating the anti-cancer drug doxorubicin hydrochloride. The binding affinity of doxorubicin within the micelle carrier is enhanced through complex formation of drug and anionic surfactant, aerosol OT (AOT). Electrostatic binding of doxorubicin with negatively charged surfactants leads to the formation of hydrophobic drug–surfactant complexes. Surfactant-induced partitioning of the anti-cancer drug into nonpolar solvents such as chloroform is investigated. SANS measurements were performed on pluronic P123 mi-celles in the presence of drug–surfactant complex. No significant changes in the structure of the micelles are observed upon drug encapsulation. This demonstrates that surfactant–drug complexes can be encapsulated in block copolymer micelles without disrupting the structure of aggregates.

    • Tuning intermicellar potential of Triton X-100– anthranilic acid mixed micelles

      Gunjan Verma V K Aswal S K Kulshreshtha C Manohar P A Hassan Eric W Kaler

      More Details Abstract Fulltext PDF

      Structural parameters of micelles formed by Triton X-100 in the presence of solubilized anthranilic acid at different pH values was investigated using light scattering and small angle neutron scattering. Analysis of the SANS data indicate that micelles are oblate ellipsoidal in nature with little variation in the dimensions, in the investigated pH range (from 0.5 to 6.0). The interaction potential of the micelles shows a minimum closer to the isoelectric point of anthranilic acid. A similar variation is observed in the cloud point of the micelles with pH. The observed variation in the interaction potential with pH of the micellar solution can be explained in terms of the reversal of charge on anthranilic acid due to shift in the acid–base equilibrium. The variation in interaction potential and cloud point with pH is modelled using Coulombic repulsion of charged molecules at the micelle interface.

    • Structural investigation of viscoelastic micellar water/CTAB/NaNO3 solutions

      K Kuperkar L Abezgauz D Danino G Verma P A Hassan V K Aswal D Varade P Bahadur

      More Details Abstract Fulltext PDF

      A highly viscoelastic worm-like micellar solution is formed in hexa-decyltrimethylammonium bromide (CTAB) in the presence of sodium nitrate (NaNO3). A gradual increase in micellar length with increasing NaNO3 was assumed from the rheological measurements where the zero-shear viscosity ($\eta_{0}$) versus NaNO3 concentration curve exhibits a maximum. However, upon increase in temperature, the viscosity decreases. Changes in the structural parameters of the micelles with addition of NaNO3 were inferred from small angle neutron scattering measurements (SANS). The intensity of scattered neutrons in the low 𝑞 region was found to increase with increasing NaNO3 concentration. This suggests an increase in the size of the micelles and/or decrease of intermicellar interaction with increasing salt concentration. Analysis of the SANS data using prolate ellipsoidal structure and Yukawa form of interaction potential between mi-celles indicate that addition of NaNO3 leads to a decrease in the surface charge of the ellipsoidal micelles which induces micellar growth. Cryo-TEM measurements support the presence of thread-like micelles in CTAB and NaNO3.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.