• N SOWMYA

      Articles written in Pramana – Journal of Physics

    • Parametrisation of the experimental fusion–fission cross-sections

      H C MANJUNATHA N SOWMYA

      More Details Abstract Fulltext PDF

      We have presented non-linear analytical formula for fusion–fission cross-sections. This is achieved by analysing many fusion–fission experiments of the compound nuclei of atomic number range $23 \leq Z \leq 146$ available in literature. Our parametrised formula can reproduce the fusion–fission cross-sections which agree well with the experiments. Our parametrisations depend on the charges and masses of the compound nuclei and fission fragments only. These results can be used as a guideline for estimating the fusion–fission cross-sections in those cases where measurements do not exist and also for studying new nuclei which are not yet explored.

    • Decay of dinuclear systems formed from dubnium

      A M NAGARAJA H C MANJUNATHA N SOWMYA P S DAMODARA GUPTA S ALFRED CECIL RAJ

      More Details Abstract Fulltext PDF

      The radioactivity of the superheavy nuclei ${}^{250−275}$Db is studied and presented using the Coulomb and proximity potentials. The half-lives corresponding to different decay modes such as α, cluster decay (${}^{12}$C, ${}^{14}$N,${}^{18,20}$O, ${}^{23}$F, ${}^{20}$Ne, ${}^{34}$S, ${}^{28}$Mg and ${}^{40}$Ca) and spontaneous fission in the superheavy nuclei ${}^{250−275}$Db are studied. The studied half-lives are compared with the available experiments. The decay modes and the branching ratios of isotopes of dubnium are presented. The isotopes of dubnium, ${}^{254−263}$Db, are identified as α emitters, whereas isotopes such as ${}^{250−253}$Db and ${}^{264−275}$Db are identified as having spontaneous fission. The identified alpha emitting isotopes of dubnium have decay energies from 6 MeV to 10 MeV and half-lives 1 ms to 100 s. The possible projectile–target combinations to synthesise the superheavy nuclei ${}^{253−263}$Db were predicted. The fusion of spherical projectile and target yields larger evaporation residue cross-sections.

    • Heavy ion fusion with lead and bismuth targets

      P S DAMODARA GUPTA H C MANJUNATHA N SOWMYA L SEENAPPA N MANJUNATHA T GANESH

      More Details Abstract Fulltext PDF

      The cold fusion reactions with lead and bismuth as targets were used in the synthesis of superheavy elements (SHE) with mass number up to 113. Researchers ignored the cold fusion reactions in the synthesis of SHE>113. This may be due to the improper choice of projectiles. The present study focusses on cold fusion reactions leading to the formation of SHE from Z = 112 to 126. Suitable projectiles for the fusion reaction using $^{208}$Pb and $^{209}$Bi targets were identified. The fusion and evaporation residue cross-sections are evaluated usingadvance statistical model. The produced cross-sections were compared with the available experiments. Suitable projectiles for synthesising the superheavy elementswith Z = 104–126 using lead and bismuth targets are predicted.The predicted production cross-sections vary from nanobarn (nb) to picobarn (pb). The use of spherical–spherical projectile and target yields larger cross-sections than spherical–deformed or deformed–spherical projectile andtarget combination.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.