• NITISH PRAJAPATI

      Articles written in Pramana – Journal of Physics

    • Multiswitching combination–combination synchronization of chaotic systems

      AYUB KHAN DINESH KHATTAR NITISH PRAJAPATI

      More Details Abstract Fulltext PDF

      In this paper, a novel synchronization scheme is investigated for a class of chaotic systems. Themultiswitching synchronization scheme is extended to the combination–combination synchronization scheme such that the combination of state variables of two drive systems synchronize with different combination of state variables of two response systems, simultaneously. The new scheme, multiswitching combination–combination synchronization (MSCCS), is a notable extension of the earlier multiswitching schemes concerning only the single drive–response system model. Various multiswitching modified projective synchronization schemes are obtained as special cases of MSCCS, for a suitable choice of scaling factors. Suitable controllers have been designed and using Lyapunov stability theory sufficient condition is obtained to achieve MSCCS between four hyperchaotic systems and the corresponding theoretical proof is given. Numerical simulations are performed to validate the theoretical results.

    • Multiswitching compound antisynchronization of four chaotic systems

      AYUB KHAN DINESH KHATTAR NITISH PRAJAPATI

      More Details Abstract Fulltext PDF

      Based on three drive–one response system, in this article, the authors investigate a novel synchronization scheme for a class of chaotic systems. The new scheme, multiswitching compound antisynchronization (MSCoAS), is a notable extension of the earlier multiswitching schemes concerning only one drive–one response system model. The concept of multiswitching synchronization is extended to compound synchronization scheme such that the statevariables of three drive systems antisynchronize with different state variables of the response system, simultaneously. The study involving multiswitching of three drive systems and one response system is first of its kind. Various switched modified function projective antisynchronization schemes are obtained as special cases of MSCoAS, for a suitable choice of scaling factors. Using suitable controllers and Lyapunov stability theory, sufficient condition is obtained to achieve MSCoAS between four chaotic systems and the corresponding theoretical proof is given.Numerical simulations are performed using Lorenz system in MATLAB to demonstrate the validity of the presented method.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.