• NITA S KULKARNI

      Articles written in Pramana – Journal of Physics

    • Physics design of a 10 MeV, 6 kW travelling wave electron linac for industrial applications

      NITA S KULKARNI RINKY DHINGRA VINIT KUMAR

      More Details Abstract Fulltext PDF

      We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a $2\pi/3$ mode constant impedance travelling wave structure, which comprises travelling wave buncher cells, followed by regular accelerating cells. The structure is designed to accelerate 50 keV electron beam from the electron gun to 10 MeV. This paper describes the details of electromagnetic design simulations to fix the mechanical dimensions and tolerances, as well as heat loss calculations in the structure. Results of design simulations have been compared with those obtained using approximate analytical formulae. The beam dynamics simulation with space charge is performed and the required magnetic field profile for keeping the beam focussed in the linac has been evaluated and discussed. An important feature of a travelling wave linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Threedimensional transient simulations of the accelerating structure along with the input and output couplers have beenperformed using the software CST-MWS to explicitly demonstrate this feature.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.