• N Kawade

      Articles written in Pramana – Journal of Physics

    • Measurement of flow fluctuations in single longitudinal mode pulsed dye laser

      V S Rawat N Kawade G Sridhar Sunita Singh L M Gantayet

      More Details Abstract Fulltext PDF

      A simple technique had been demonstrated for measuring flow-induced fluctuations in the single longitudinal mode (SLM) pulsed dye laser. Two prominent frequency components of 10.74 Hz and 48.83 Hz were present in the output of the Nd:YAG-pumped SLM dye laser. The flow-induced frequency component of 48.83 Hz was present due to the revolution per minute of the motor attached to the magnetically coupled gear pump. The time average bandwidth of 180 MHz has been obtained for this SLM dye laser. The effect of pump pulse energy on the bandwidth of the SLM dye laser was studied. The bandwidth of the SLM dye laser was increased to 285 MHz from 180 MHz, when the pump pulse energy was increased to 0.75 mJ from 0.15 mJ for a constant dye flow velocity of 0.5 m/s.

    • Spectral narrowing of coherent population trapping resonance in laser-cooled and room-temperature atomic gas

      S Pradhan S Mishra R Behera N Kawade A K Das

      More Details Abstract Fulltext PDF

      We have investigated coherent population trapping (CPT) in laser-cooled as well as room-temperature (with and without buffer gas) rubidium atoms. The characteristic broad signal profile emerging from the two-photon Raman resonance for room-temperature atomic vapour is consistent with the theoretical calculation incorporating associated thermal averaging. The spectral width of the dark resonance obtained with cold atoms is found to be broadened, compared to roomtemperature vapour cell, due to the feeble role played by thermal averaging, although the cold atomic sample significantly overcomes the limitation of the transit time broadening. An alternative way to improve transit time is to use a buffer gas, with which we demonstrate that the coherent population trapping signal width is reduced to < 540 Hz.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.