Monojit Ghosh
Articles written in Pramana – Journal of Physics
Volume 86 Issue 2 February 2016 pp 387-393 Special: Neutrino Physics
Evidence for leptonic CP phase from NO𝜈A, T2K and ICAL
Monojit Ghosh Pomita Ghoshal Srubabati Goswami Sushant K Raut
The phenomenon of neutrino oscillation is now well understood from the solar, atmospheric, reactor and accelerator neutrino experiments. This oscillation is characterized by a unitary PMNS matrix which is parametrized by three mixing angles (𝜃12, 𝜃23 and 𝜃13) and one phase (𝛿CP) known as the leptonic CP phase. Neutrino oscillation also involves two mass squared differences: the solar mass square difference (𝛥21 = 𝑚22 − 𝑚21) and the atmospheric mass square difference (𝛥31 = |𝑚23−𝑚21|). Though there is already significant amount of information about the three mixing angles, the CP phase is still unknown. Apart from the CP phase, one should also know what is the true nature of the neutrino mass hierarchy, i.e., normal (𝑚3 > 𝑚1: NH) or inverted (𝑚1 > 𝑚3: IH) and what is the true octant of 𝜃23, i.e., lower (𝜃23 < 45°: LO) or higher (𝜃23 > 45°: HO). The long-baseline experiments (LBL) have CP sensitivity coming from the appearance channel $(\nu_{\mu} \rightarrow \nu_{e}$). On the other hand, atmospheric neutrinos are known to have negligible CP sensitivity. In this work, we study the synergy between the LBL experiment NO𝜈A, T2K and the atmospheric neutrino experiment ICAL@INO for obtaining the first hint of CP violation in the lepton sector. We find that due to the lack of knowledge of hierarchy and octant, CP sensitivity of NO𝜈A/T2K is poorer for some parameter ranges. Addition of ICAL data to T2K and NO𝜈A can exclude these spurious wrong-hierarchy and/or wrong-octant solutions and cause a significant increase in the range of 𝛿CP values for which a hint of CP violation can be achieved. Similarly, the precision with which 𝛿CP can be measured also improves with the inclusion of ICAL data.
Volume 88 Issue 5 May 2017 Article ID 0079 Research Article
Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO)
A KUMAR A M VINOD KUMAR ABHIK JASH AJIT K MOHANTY ALEENA CHACKO ALI AJMI AMBAR GHOSAL AMINA KHATUN AMITAVA RAYCHAUDHURI AMOL DIGHE ANIMESH CHATTERJEE ANKIT GAUR ANUSHREE GHOSH ASHOK KUMAR ASMITA REDIJ B SATYANARAYANA B S ACHARYA BRAJESH C CHOUDHARY C RANGANATHAIAH C D RAVIKUMAR CHANDAN GUPTA D INDUMATHI DALJEET KAUR DEBASISH MAJUMDAR DEEPAK SAMUEL DEEPAK TIWARI G RAJASEKARAN GAUTAM GANGOPADHYAY GOBINDA MAJUMDER H B RAVIKUMAR J B SINGH J S SHAHI JAMES LIBBY JYOTSNA SINGH K RAVEENDRABABU K K MEGHNA K R REBIN KAMALESH KAR KOLAHAL BHATTACHARYA LALIT M PANT M SAJJAD ATHAR M V N MURTHY MANZOOR A MALIK MD NAIMUDDIN MOHAMMAD SALIM MONOJIT GHOSH MOON MOON DEVI NABA K MONDAL NAYANA MAJUMDAR NITA SINHA NITALI DASH POMITA GHOSHAL POONAM MEHTA PRAFULLA BEHERA R KANISHKA RAJ GANDHI RAJESH GANAI RASHID HASAN S KRISHNAVENI S M LAKSHMI S K SINGH S S R INBANATHAN S UMA SANKAR SADIQ JAFER SAIKAT BISWAS SANJEEV KUMAR SANJIB KUMAR AGARWALLA SANDHYA CHOUBEY SATYAJIT SAHA SHAKEEL AHMED SHIBA PRASAD BEHERA SRUBABATI GOSWAMI SUBHASIS CHATTOPADHYAY SUDEB BHATTACHARYA SUDESHNA BANERJEE SUDESHNA DASGUPTA SUMANTA PAL SUPRATIK MUKHOPADHYAY SUSHANT RAUT SUVENDU BOSE SWAPNA MAHAPATRA TAPASI GHOSH TARAK THAKORE V K S KASHYAP V S SUBRAHMANYAM VENKTESH SINGH VINAY B CHANDRATRE VIPIN BHATNAGAR VIVEK M DATAR WASEEM BARI Y P VIYOGI
The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies andpath lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial toaddress some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations.We describe the simulation framework, the neutrino interactions in the detector, and the expected responseof the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Itscharge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2023-2024 Indian Academy of Sciences, Bengaluru.