• M Khantha

      Articles written in Pramana – Journal of Physics

    • First passage time distributions for finite one-dimensional random walks

      M Khantha V Balakrishnan

      More Details Abstract Fulltext PDF

      We present closed expressions for the characteristic function of the first passage time distribution for biased and unbiased random walks on finite chains and continuous segments with reflecting boundary conditions. Earlier results on mean first passage times for one-dimensional random walks emerge as special cases. The divergences that result as the boundary is moved out to infinity are exhibited explicitly. For a symmetric random walk on a line, the distribution is an elliptic theta function that goes over into the known Lévy distribution with exponent 1/2 as the boundary tends to ∞.

    • First passage time and escape time distributions for continuous time random walks

      V Balakrishnan M Khantha

      More Details Abstract Fulltext PDF

      We consider an arbitrary continuous time random walk (ctrw)via unbiased nearest-neighbour jumps on a linear lattice. Solutions are presented for the distributions of the first passage time and the time of escape from a bounded region. A simple relation between the conditional probability function and the first passage time distribution is analysed. So is the structure of the relation between the characteristic functions of the first passage time and escape time distributions. The mean first passage time is shown to diverge for all (unbiased)ctrw’s. The divergence of the mean escape time is related to that of the mean time between jumps. A class ofctrw’s displaying a self-similar clustering behaviour in time is considered. The exponent characterising the divergence of the mean escape time is shown to be (1−H), whereH(0<H<1) is the fractal dimensionality of thectrw.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.