• MUNISH AGGARWAL

      Articles written in Pramana – Journal of Physics

    • Non-planar electron-acoustic waves with hybrid Cairns–Tsallis distribution

      SONA BANSAL MUNISH AGGARWAL

      More Details Abstract Fulltext PDF

      Non-planar electron-acoustic waves having Cairns–Tsallis distributed hot electrons are investigated under multiple temperature electrons model in unmagnetised plasma. In this model, Korteweg–de Vries (KdV) equation is obtained in the cylindrical/spherical coordinates.On the basis of the solutions of KdV equation, variation of solitary wave features (amplitude, velocity and width) with different plasma parameters are analysed. Dispersion and nonlinear coefficients obtained depend on the particle density $\alpha$, non-extensive parameter $q$, electron temperature ratio $\theta$ and non-thermal parameter $\gamma$ . Combined effect of all these plasma parameters significantly changes the properties of the solitary waves in non-planar geometry. It is observed that increasing the number of non-thermal electrons in the medium increases the amplitude, velocity as well as width of the non-planar waves whereas with the increase in temperature, the velocity of waves decreases and this impact is dominant in spherical waves. This two-parameter ($\gamma, q$) distribution model (C–T) is applicable to a wide range of observed plasmas, i.e. auroral region and magnetosphere of the Earth.

    • Zakharov–Kuznetsov–Burgers equation in a magnetised non-extensive electron–positron–ion plasma

      SONA BANSAL MUNISH AGGARWAL

      More Details Abstract Fulltext PDF

      In this paper, we have studied the three-dimensional (3D) electron-acoustic waves (EAWs) in a three component complex plasma containing $q$-non-extensive distributed hot electrons and positrons. The propagation characteristics of the 3D electron-acoustic (EA) shock waves under the influence of magnetic field have been studied. Our present plasma model supports the negative potential shocks. Combined action of dissipation ($\eta$), nonextensivity ($q$), concentration of positrons ($\beta$), temperature ratio of cold electrons to positrons ($\sigma$) and magnetic field ($\omega_{c}$) on the EA shock waves has been studied in detail and the findings obtained here will be beneficial in future astrophysical investigations.

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.